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Chapter 1

Introduction

In 1954 C.N. Yang and R. Mills published a paper [59] which would give
direction to the development of several areas of pure mathematics and the-
oretical physics over the coming decades. In an attempt to generalise the
gauge theoretic framework of electromagnetism, Yang and Mills paved the
way for the development of the standard model of particle physics, which
is in fact a SU(3)×SU(2)×U(1) gauge theory. It took several decades, how-
ever, for gauge theory to gain widespread mathematical interest, although
since then it has had a profound impact on several areas of pure mathemat-
ics — most notably geometry, topology and non-linear partial differential
equations (PDE). Of most interest to us is the interplay between Yang–Mills
theory and the analysis of non-linear PDE. This thesis is devoted to explor-
ing and understanding the fundamental contributions of Karen Uhlenbeck
and Michael Struwe to the mathematical community’s understanding of
the analytic aspects of Yang–Mills theory.

Loosely speaking, a gauge is a way of giving a geometric object a ‘co-
ordinate system’. A gauge change can then be thought of simply as a
change of ‘co-ordinates’, and a quantity is gauge invariant if it is preserved
by gauge changes. Physical quantities are typically gauge invariant, and
it is this gauge invariance which makes the analysis of PDE in gauge the-
ory so difficult and interesting. In order to work with a model from a PDE
perspective, one must usually fix a gauge, which is the same as stipulat-
ing a ‘co-ordinate system’. Analogously to how choosing polar or cartesian
co-ordinates may simplify a vector calculus problem in R3, one method of
gauge fixing may yield a more tractable problem than another. As such,
one of the underlying themes of this thesis is finding good gauges.

In Chapter 2 we develop some of the mathematical machinery necessary
for this thesis and also recast the classical theory of electromagnetism as a
gauge theory. The central mathematical objects which we work with are
connections and curvature, denoted by D and FD, respectively. The main
problem of Yang–Mills theory is to find a connection which minimises the
Yang–Mills functional,

YM(D) =

∫
M
|FD|2 ∗ (1).

From an analysis perspective, this was approached as a variational prob-
lem; however, compared with classical variational problems, this was made
more delicate by the gauge invariance of the functional. This gave rise to
two major obstacles:
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• The classical notion of uniqueness was no longer valid.

• The functional was degenerate.

Moreover, the functional was required to be coercive in order for minimisers
to be physically meaningful. To overcome these problems, it was clear that
the gauge symmetry first needed to be broken. The major questions, then,
were:

• Is it possible to break the gauge symmetry?

• If it is, is there a ‘best’ way to do this?

It is Uhlenbeck’s 1982 paper ‘Connections with Lp bounds on curvature’
[53] which answers these two questions. Based on Uhlenbeck’s result, the
variational approach to Yang–Mills theory would ultimately prove success-
ful in showing the existence of a minimising sequence of the Yang–Mills
functional, although it was possible that this sequence necessarily converged
over a different bundle. This is the main result of [46]. In Chapter 3 we re-
view [53] and give an exposition of her argument and provide a discussion
of its significance.

Dimension four is both physically and mathematically of significant in-
terest in Yang–Mills theory. Physically, this is because one usually considers
space-time as a four dimensional pseudo-Riemannian manifold. Mathe-
matically, dimension four is critical in two senses. Geometrically, the func-
tional is invariant under conformal transformations of the base manifold in
dimension four. This is analogous to the case of the Dirichlet energy for
harmonic maps in dimension two. Analytically, the relevant Sobolev em-
bedding is critical when the minimal regularity assumptions are imposed
on the space of connections. In a way which we will later make precise, this
means that the coercivity condition is simplified, but that the elements of
the gauge group are not necessarily continuous.

Suppose now that one has a minimiser of the Yang–Mills functional in
the critical dimension with minimal regularity assumptions on the gauge
group. This minimiser is then gauge equivalent to infinitely many other
minimisers, but since elements of the gauge group are not necessarily con-
tinuous we have that a gauge change might induce a singularity in an oth-
erwise smooth field. The question, then, is how to determine when singu-
larities in Yang–Mills fields are inherent, and when they could be removed
by a good choice of gauge. It is another of Uhlenbeck’s papers, ‘Removable
Singularities in Yang–Mills Fields’ [54] which not only answers this ques-
tion in dimension four, but also provides a method to find a good gauge
change. The entirety of Chapter 4 is devoted to an exposition of this paper
in preparation for the Yang–Mills heat flow.

The heat flow method is well studied in geometric analysis, and it aims
to construct a minimiser of a functional by deforming it along its lines of
steepest descent. It was Atiyah and Bott in [1] who first suggested the heat
flow method to explicitly construct a minimiser of the Yang–Mills func-
tional, although it was Donaldson in [14] who first carried out this tech-
nique in the case of Kähler manifolds. This was a much celebrated result,
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although it still left open the main analytic problem of the Yang–Mills heat
flow. This is because Donaldson’s argument breaks down when one drops
the regularity requirement of the gauge group. A much more subtle ap-
proach was required, and in a method strongly reminiscent of his earlier
work on the harmonic map heat flow, [47] Michael Struwe demonstrated
the short time existence to solutions of the Yang–Mills heat flow over real
four-manifolds with minimal regularity assumptions in his 1994 paper ‘The
Yang–Mills Flow in Four Dimensions’ [48]. The final chapter of this thesis
is devoted to the analysis of Struwe’s heat flow argument.
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Chapter 2

Gauge Theory

2.1 Introduction

In this chapter we give a brief overview of the mathematics which is re-
quired for this thesis. Although to fully develop all of the machinery would
take far too long - indeed, it would (and does) take many textbooks - we
hope that this chapter will provide insight into some of the nuances of
gauge theory. We first develop the theory of principal fibre bundles, which
are central geometric objects in gauge theory. From these, we can develop
the theory of vector bundles, which will be the main setting of our study
in the subsequent chapters. We then give a brief exposition of the Yang–
Mills functional, and then recast electromagnetism as a gauge theory. In
this setting we consider both the static point electric charge, an electron,
and also the magnetic analogue, a magnetic monopole. Finally, we bring
several classical ideas of analysis into the language of gauge theory.

2.2 Principal Fibre Bundles

Although the main setting for our study in later chapters will be vector
bundles, it is instructive and traditional to first develop the theory of prin-
cipal bundles. In our case both the vector bundle and the principal bundle
approach to gauge theory are equivalent, and we will explain this equiv-
alence later. Unless stated otherwise, let M be a smooth, oriented, finite
dimensional, compact and boundary free Riemannian manifold and G be a
compact Lie group.

2.2.1 Definition and First Consequences

Definition 2.2.1 (Principal Fibre Bundle). A principal bundle over M with
structure group G is a triple (π, P, σ), where P is a manifold, called the total
space, π is a smooth map

π : P →M

and

σ : P ×G→ G

(u, g) 7→ u · g

is a smooth right action of G on P such that the following conditions hold
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(i) σ preserves fibres of P , i.e.

π(u · g) = π(u) (2.1)

for all u ∈ P and g ∈ G.

(ii) (Local triviality) For each x0 ∈ M there exists a local trivialisation of
P , (U,ψ), which consists of an open neighbourhood U of x0 in M and
a diffeomorphism ψ : π−1(U)→ U ×G of the form

ψ(u) = (π(u), ϕ(u)), (2.2)

where ϕ : π−1(U)→ G satisfies

ϕ(u · g) = ϕ(u)g (2.3)

for all u ∈ π−1(U) and g ∈ G.

We call the manifoldM the base space, and the spaces π−1(π(u)) and π−1(x)
for u ∈ P, x ∈M the fibre through u and the fibre over x, respectively.

If the action and projection map are understood we will often refer to
P as a principal G-bundle and write G ↪→ P → M . By restricting the local
trivialisation to a point we see that the fibres of P are diffeomorphic to G,
although the standard fibres of G are not Lie groups. This is because there
can be no identity element in the fibre. To see this, suppose u ∈ π−1(x).
Then we must have

ϕ(u · g) = ϕ(g) = ϕ(u)g,

which is not guaranteed to be true.

An important consequence of this definition is that we will be able to
identify fibres of P as orbits of the group action. We prove this in the fol-
lowing lemma.

Lemma 2.2.2. If (π, P, σ) is a principal fibre bundle with group G over M then
each fibre through u for u ∈ P is exactly the orbit of u under σ.

Proof. We want to show that π−1(π(u)) = {u · g : g ∈ G}, and so a natural
method is to show inclusions both ways. The inclusion π−1(π(u)) ⊇ {u · g :
g ∈ G} is immediate by (2.1). To see that π−1(π(u)) ⊆ {u · g : g ∈ G}
let u′ ∈ π−1(π(u)). We then aim to show that there necessarily exists a
g ∈ G such that u′ = u · g. Let (U,ψ) be a trivialisation as in (2.2). Then
ϕ(u), ϕ(u′) ∈ G, and so we let g := (ϕ(u))−1ϕ(u′) ∈ G. Then by (2.3)
we have that ϕ(u · g) = ϕ(u′). Therefore ψ(u · g) = (π(u · g), ϕ(u · g)) =
(π(u′), ϕ(u′)) = ψ(u′). Then, since ψ is a diffeomorphism we have that
u · g = u′, and this concludes the proof.

Remark 2.2.3. As noted in the introduction, a gauge can be thought of as
giving a geometric object a ‘co-ordinate system’. It is exactly the triviali-
sations of a principal fibre bundle which do this by providing diffeomor-
phisms which are compatable with the group action on fibres. Under this
diffeomorphism, we may view a point in a fibre as corresponding to an
element in the Lie group, although this identification is dependent on the
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trivialisation.

Consider now a fibre Px, u ∈ Px and a trivialisation ψ : Px → G such
that ψ(u) = (x, e). By the compatability condition of the trivialisations we
can in some sense consider u to be a ‘base point’ of the fibre, and measure
the ‘location’ of the other points of the fibre with respect to u and the group
action.

Note that this ‘location’ is dependent on the trivialisation, since choos-
ing a different trivialisation would specify a different ‘base point’. Conse-
quently, two points of the fibre would be related by a different element of
the group action. For more on the geometric meaning of a gauge, the blog
article of Terence Tao [49] is an excellent resource.

Example 2.2.4. Before we continue with our construction of principal bun-
dles and their properties, it is useful to consider some concrete examples.

(i) As a first example of a principal fibre bundle, consider the case where
P is a principal G-bundle and P = M × G, i.e. P is globally trivialis-
able. We call such a bundle the trivial bundle.

(ii) The Hopf fibration S1 ↪→ S3 → S2 is one of the earliest examples of
a non-trivial principal fibre bundle. With the identification of S3 as
the unit sphere in C2, g ∈ G = U(1) and (z1, z2) ∈ S3. Note that
(z1, z2) ∈ S3 =⇒ |z1|2 + |z2|2 = 1. The action is defined as

σ((z1, z2), g) = (z1 · g, z2 · g) = (z1g, z2g).

This particular example will play a central role in our exposition of
principal bundles, as it is of great physical significance. Although S3

is embedded in 4-dimensional space, one can view S3 as the compact-
ification of R3, and as such get a geometric interpretation of what a
non-trivial fibre bundle looks like. The image below was found at
[25] and is useful in visualising the Hopf fibration. Each point on the
sphere corresponds to a circle in R3 of the same colour, its ‘fibre’. The
Hopf fibration is well-studied, and we refer to, for example, Chapter
0.3 of [36], for a more in-depth discussion.
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FIGURE 2.1: The Hopf fibration over S2

(iii) Another principal bundle of central importance to our theory is the
frame bundle of a vector bundle. For more on vector bundles, we
refer to, for example, Chapter 2 of [27]. This example will motivate
the discussion of the equivalence of the vector bundle and principal
bundle approaches to gauge theory, and so we discuss it in more detail
in Section 2.2.2.

In analogy with Riemannian geometry we must define transition maps
between trivialisations on the intersection between two trivialisations. Sup-
pose that P is a principal bundle over the base space M with structure
group M , then if (Uα, ψα) and (Uβ, ψβ) are two trivialisations with non-
trivial intersection, we want to establish some sort of relation

ψβ ◦ ψ−1
α (x, a) = (x, ψαβ(x)a)

for any x ∈ M and a ∈ G. By various applications of the properties of a
principal bundle, note that

ψβ ◦ ψ−1
α (π(u), a) = ψβ ◦ ψ−1

α (π(u), ϕα(u)ϕ−1
α (u)a)

= ψβ ◦ ψ−1
α (π(u), ϕα(u · ϕ−1

α (u)a))

= ψβ ◦ ψ−1
α (π(u · ϕ−1

α (u)a)), ϕα(u · ϕ−1
α (u)a))

= ψβ(u · ϕ−1
α (u)a)

= (π(u), ϕβ(u · ϕ−1
α (u)a))

= (π(u), ϕβ(u)ϕ−1
α (u)a)).
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Remark 2.2.5. Since G acts freely and transitively on fibres this definition
does not depend on the choice of u.

This motivates the following definition:

Definition 2.2.6. Let {Uα}α∈I , where I is an indexing set, be an open cov-
ering of M with diffeomorphisms ψα : π−1(Uα) → Uα × G such that u 7→
(π(u), ϕα(u)). Then for any α, β ∈ I such that Uα ∩ Uβ 6= ∅ we define a
mapping

ψαβ : Uα ∩ Uβ → G

ψαβ(π(u)) = ϕα(u)ϕ−1
β (u)

for any u ∈ P .

By this definition, we have

ψαα = e on Uα
ψαβψβα = e on Uα ∩ Uβ

ψαβψβγψγα = e on Uα ∩ Uβ ∩ Uγ

which are known as the cocycle relations. These transition functions are im-
portant in the theory of fibre bundles, and any fibre bundle (not necessarily
principal) can actually be reconstructed from its transition functions - see,
for instance, Chapter 5.3, Theorem 3.2 of [24].

Definition 2.2.7. Let G ↪→ P → M be a principal G-bundle and let {Uα}
cover M . Then sα : Uα → P is called a section of P , or local gauge.

The relationship between sections of P and trivialisations of P is of fun-
damental importance to the theory of principal bundles. It is impossible to
always define a global connection, and we find that local sections and local
trivialisations of P are in a 1-1 correspondence.

Lemma 2.2.8. Let (π, P, σ) be a principal G-bundle. Then there is a bijection
between local sections and trivialisations of P .

Proof. Let ψ : π−1(U)→ U ×G be a local trivialisation of P . We then define
the canonical section as sU (x) = ψ−1(x, e), where the subscript U denotes the
coordinate patch. Conversely, given a section s : U → P , we are able to de-
fine a trivialisation of P by taking advantage of Lemma 2.2.2. By definition,
we have that

π−1(U) =
⊔
x∈U

π−1(x) =
⊔
x∈U
{s(x) · g : g ∈ G},

and we claim that ψ : π−1(U)→ U ×G given by ψ(s(x) · g) = (x, g) defines
a local trivialisation (ψ,U). By Lemma 2.2.2, we have that ψ is a bijection
and

ψ(s(x) · g) = (π(s(x)), ϕ(s(x) · g)),

where ϕ(s(x) · g) = g. Therefore

ϕ(s(x) · g · g′) = gg′ = ϕ(s(x) · g)g′ =⇒ ϕ(s(x) · g · g′) = ϕ(s(x) · g)g′
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for all x ∈ U and g, g′ ∈ G. The smoothness of ψ−1(x, g) = s(x) · g follows
from the smoothness of the action, and the smoothness of ψ will follow
from the smoothness of ϕ : π−1(U) → G, and so to see the smoothness
of ϕ, choose a trivialisation of P , (U,ψ′), where ψ′(p) = (π(p), ϕ′(p)) and
ϕ′(p) = (s(x) · g) = g. Now, we have that

ϕ′(p) = ϕ′((s ◦ π)(p) · g) = ((ϕ ◦ s ◦ π)(p))g,

and so

g = ϕ′(p)((ϕ ◦ s ◦ π)(p))−1 = ϕ(p),

and so we see that ϕ is the composition of smooth functions, and so is there-
fore smooth. Therefore (U,ψ) is a local trivialisation of P .

We have the following important consequence:

Corollary 2.2.9. A principal fibre G-bundle (π, P, σ) is trivial if and only if it
admits a global section.

Proof. If P admits a global section, then this induces a trivialisation (M,ψ)
such that ψ : π−1(M) → M × G, and so P is trivial. Conversely, if P is
trivial, then the canonical section associated to this trivialisation is globally
defined.

Definition 2.2.10. Let G ↪→ P → M be a principal G-bundle, and let Φ :
π−1(U)→ π−1(U) be a bundle automorphism such that

Φ(p · g) = Φ(p) · g (2.4)

for all p ∈ P and g ∈ G. We call such an automorphism a local gauge trans-
formation.

Note that condition (2.4) means that the bundle automorphism is a fibre-
wise automorphism, i.e., that π ◦Φ = π. Since compositions and inverses of
automorphisms are also automorphisms, we have the following definition:

Definition 2.2.11. Let G ↪→ P →M be a principal G-bundle. The collection
of all gauge transformations of P form a group, called the gauge group of P
and we denote this G.

Remark 2.2.12. The terminology introduced above is motivated by physics,
and it should be noted that in the physics literature it is common to refer
to both the structure group of a principal bundle, and the group of fibre-
preserving automorphisms of the bundle as the gauge group.

2.2.2 The Frame Bundle

One of the most important and most-studied examples of a principal fibre
bundle is the frame bundle. The frame bundle should be taken as a motivat-
ing example of a principal fibre bundle, and in this section we will review
the construction of a frame bundle, although its importance will only be-
come clear in Section 2.6. These objects are well studied, and we refer to,
for example, [36] Chapter 3.3, or [29], Chapter 10.11 for a detailed treatment.
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Informally, a frame of a finite dimensional vector space is an ordered
basis. When dealing with vector bundles, one requires a way of associating
a frame to each fibre. More concretely, let M be a smooth d-dimensional
manifold (not necessarily oriented or Riemannian) and E a vector bundle
of rank n over M . A frame of E at x ∈ M is an ordered basis p = (v1, ..., vn)
for Ex. Any such frame p gives rise to a linear isomorphism

p̃ : Rn → Ex

p̃(ei) = vi,

where {ei}i=1,...,n is the usual basis of Rn. For each x ∈ M we denote by
F (Ex) the set of all frames at x ∈M . We then define the frame bundle to be

F (E) =
⊔
x∈M

F (Ex).

For each p ∈ F (Ex), we define a surjective map

π : F (E)→M

π(p) = x.

We define σ : F (E)×GL(n,R)→ F (E) as follows: For each (p, g) ∈ F (E)×
GL(n,R) with p = (p1, ..., pn) ∈ F (Ex) and g = (gij) ∈ GL(n,R), we let
σ(p, g) = p · g be the frame (p̂1, ..., p̂n) at x ∈M defined by

p̂j = pig
i
j , for j = 1, ..., n.

This is just matrix multiplication from the right, which makes it clear that σ
satisfies the requirements of a group action, namely p · (g1g2) = (p · g1) · g2

for g1, g2 ∈ GL(n,R), and also that p · e = p. Moreover, by this definition
we also have π(p · g) = π(p) for all p ∈ F (E), g ∈ GL(n,R). In general,
when we have that the group action is given by matrix multiplication from
the right, we will write σ(p, g) := Rg(p) = pg. To check that this defines not
only a smooth manifold structure, but also a bundle structure is detailed
calculation. Such a calculation is out of scope of this chapter, and so we
refer to [36], Chapter 3.3 for a construction of the frame bundle associated
to a tangent bundle of a manifold, or to, for example, [29], Chapter 10.11 for
a more general construction.

A local section of the frame bundle s : U → F (E) assigns to each x ∈M
a frame s(x) = (u1(x), ..., un(x)) at x and is called a frame field or moving
frame. We will be able to say more about the frame bundle of (E, π,M), a
vector bundle of rank n, if we know more about M . Namely, we have the
following Theorem:

Theorem 2.2.13. Each vector bundle (E, π,M) of rank n of an oriented Rieman-
nian manifold M with a bundle metric has structure group G ⊆ SO(n).

Proof. Let (f, U) be a bundle chart for E,

f : π−1(U)→ U × Rn.



12 Chapter 2. Gauge Theory

Let {ei}i=1,...,n be the canonical basis of Rn, and let v1, ..., vn be the sec-
tions of π−1(U) with f(vi) = ei for each i = 1, ..., n. By applying Gram-
Schmidt orthogonalisation (see, for example [16], Chapter 2.1d) to the sec-
tions v1(x), ..., vn(x) for each x ∈ U we obtain sections w1, ..., wn of π−1(U)
for which w1(x), ..., wn(x) are an orthonormal basis with respect to the bun-
dle metric for each x ∈ U . By

f ′ : π−1(U)→ U × Rn

λiwi(x) 7→ (x, λ1, ..., λn)

we get a bundle chart which maps the basis w1(x), ..., wn(x) for each x ∈ U
onto a Euclidean orthonormal basis of Rn. By applying this orthonormali-
sation procedure for each bundle chart we obtain a new bundle atlas whose
transition maps always map a Euclidean orthonormal basis of Rn into an-
other orthonormal basis of Rn. Since the manifold is oriented, the transition
maps of the atlas all have positive functional determinant, and with this we
see that the Jacobian matrix between transition maps for the vector bundle
all have determinant 1. Therefore, the largest group which the transition
maps take their values in is SO(n).

With this, we may say that the frame bundle of an a vector bundle is a
principal G bundle, where G ⊆ SO(n), if we have that the base space is an
oriented Riemannian manifold. In the subsequent chapters it is frequently
assumed that the structure group of the vector bundle being cosidered is a
subgroup of SO(n), and this is the reason why this is valid - we are always
working with oriented Riemannian manifolds.

2.3 Connections of a Fibre Bundle

We now come to one of the most important ideas in this chapter - the con-
nection. In order to be able to ‘differentiate’ sections of the bundle we will
need a method of identifying points in adjacent fibres so that the definition
of a derivative makes sense. There are a number of equivalent ways to view
a connection, and the theory can be independently developed exclusively
for vector bundles, which is the approach commonly taken in analysis liter-
ature - see, for example, Chapter 4 of [27]. Before giving definitions, we first
discuss the problem which a connection is introduced to solve and hope-
fully motivate the necessity and importance of connections purely from a
geometric point of view. Although we will spend the majority of this sec-
tion constructing connections on principal fibre bundles, the motivation is
the same for any fibre bundle, and so we introduce some general notions
first before specialising our attention.

Let E be a fibre bundle with standard fibre F , γ : [−1, 1]→M a path in
M such that γ(0) = x and γ′(0) = X ∈ TxM and let s : M → E be a section
of E. Then we would like to define a differential ds(x) : Tx → Ts(x)E. With
Riemannian geometry in mind, we define

ds(x)X =
d

dt
s(γ(t))

∣∣∣
t=0

= lim
t→0

s(γ(t))− s(γ(0))

t
.
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Now, if E = M × F has a trivial bundle structure, then we may consider
a section as a map s : M → F , and the above definition makes sense. Un-
fortunately, in most cases of interest to us, the bundle structure is not trival,
and we have that s(γ(t)) and s(γ(0)) are in different spaces, and there is no
canonical identification between them. It is clear then, that the above defi-
nition doesn’t make sense, and that it must be altered in order to recover a
meaningful definition.

Although a canonical identification may not be possible, there should
be a way to identify adjacent fibres, seeing as they are all diffeomorphic to
F , after all. We would like to ‘connect’ adjacent fibres in a meaningful way,
and this leads to the notion of parallel transport. Just as in Riemannian geom-
etry, parallel transport leads to the notion of a covariant derivative, where it is
covariant in the sense that the derivative is independent of the co-ordinate
chart chosen.

Suppose then that we have a family of diffeomorphisms (in a sense
which have yet to make clear) for the above path γ(t) ∈M

P tγ : Eγ(0) → Eγ(t).

These are far from unique, as we will see, and this is one of the reasons why
the theory of connections is so interesting. Although highly non-unique,
these isomorphisms are not arbitrary. Suppose that we have the same set-
ting as above, then we define the covariant derivative of s along γ to be

∇Xs(x) :=
d

dt

[
(P tγ)−1 ◦ s(γ(t))

]∣∣∣∣
t=0

.

Such an identification of nearby fibres defines a path in the fibre Eγ(0),
which means that

∇s(x) : TxM → Ts(x)F,

where Ts(x)F is the tangent plane of the fibre. Note that if E is a vector
bundle of rank n, then Ts(x)F ' Rn, and if E is a principal G-bundle, then
Ts(x)F ' g.

2.3.1 The Horizontal Subbundle

If one considers the fibre bundle E as a manifold, then there is a well de-
fined tangent space TuE for each u ∈ E. We may then construct the tan-
gent bundle of E, denoted TE. Inside this bundle there is a distinguished
subbundle, called the vertical subbundle which consists of all vectors in TE
which are tangent to any fibre.

Definition 2.3.1. Let (E,M, π, F ) be a vector bundle. The vertical bundle
V E → E is the subbundle of TE → E defined by

V E := {ξ ∈ TE
∣∣ π∗ξ = 0},

where π∗ : TE → TM is the pushforward of π.
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This subbundle is uniquely determined by the structure of the fibre bun-
dle. With this definition, we see that the covariant derivative is a map

∇s(x) : TxM → Vs(x)E.

We require that

(i) ∇Xs(x) is independent of the choice of γ, so long as γ′(0) = X .

(ii) The map∇s(x) : TxM → Vs(x)E is linear.

To continue with our theory of connections we require the definition of a
horizontal subbundle. Unlike the vertical subbundle, the horizontal subbun-
dle is non-unique, and it is the assignation of a horizontal subbundle which
determines the isomorphisms P tγ in the definition of the covariant deriva-
tive. We will explore the construction of horizontal subbundles more for
principal bundles, although the definition is valid for all fibre bundles.

Definition 2.3.2. Let (E, π,M,F ) be a fibre bundle. A horizontal subbundle
is a smooth distribution HE on the total space TE such that

TE = V E ⊕HE

and

V E ∩HE = {0}

With this we come to our first definition of a connection. This definition
is valid for any fibre bundle, although the additional structure of principal
and vector bundles will impose additional conditions on a connection.

Definition 2.3.3. For any X ∈ TE, we will write X = vXv + hXh, where
Xv ∈ V E and Xh ∈ HE. A connection on the fibre bundle (E, π,M,F ) is
a smooth distribution HE on the total space such that HE ⊕ V E = TE,
VuE ∩ HuE = {0}. For each u ∈ E, the fibre HuE ⊂ TuE is called the
horizontal subspace at u.

Although it is true that this does in fact define a connection, it is in no
way clear how, or that it should be possible to, at least locally, define such
horizontal subspaces. The above definition leads to the most general notion
of a connection possible. Due to the generality of a fibre bundle, it is quite
technical to show how this choice of horizontal distribution determines the
diffeomorphisms P tγ , and so we will now restrict our attention to the case
where E is a principal fibre budle. For more about this general notion of
connection we refer to, for example, [34], Chapter 17.

2.3.2 Connections on a Principal Fibre Bundle

The theory of connections on prinicipal fibre bundles is well developed,
and most of what is introduced here will be taken from Chapter 6 of [35]
and Chapter II of [28].

As a first step towards explaining how a horizontal distribution defines
a family of diffeomorphisms for a principal fibre bundle, we introduce the
following definition:
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Definition 2.3.4. Let (P, π,M) be a principal G-bundle on which a smooth
horizontal distribution has been chosen, γ : [0, 1] → M a path through M
and γ̃ : [0, 1]→ P a path through P such that π(γ̃(t)) = γ(t) for all t ∈ [0, 1].
Then we call γ̃(t) a horizontal path through P if d

dt γ̃(t) ∈ Hγ̃(t)E.

The existence of such horizontal paths is crucial to defining the family
of diffeomorphisms. Fortunately, the following lemma guarantees the exis-
tence of a horizontal path given a path in M . The proof is rather long, and
so we cite the the textbook in which it was found, rather than reproducing
it here.

Lemma 2.3.5 (Proposition 3.1 of [28]). Let (P, π,M) be a principal G-bundle,
γ : [0, 1] → M a path in M and u0 ∈ P . Then, there is a unique horizontal lift
γ̃ : [0, 1]→ P such that γ̃(0) = u0, π(γ̃(t)) = γ(t) and γ̃(t) is a horizontal path.

This allows us to define the diffeomorphisms P tγ as follows: Let
γ : [0, 1] → M be a smooth curve in M and let u0 ∈ π−1(γ(0)) be arbitrary.
Let γ̃ : [0, 1] → E be the unique horizontal lift of γ(t) with γ̃(0) = u0. We
then define P tγ(u0) = γ̃(t) ∈ π−1(γ(t)). This map is a diffeomorphism since
Ra ◦P tγ = P tγ ◦Ra for each a ∈ G andG acts freely and transitively on fibres.
Note that because of the extra conditions imposed a principal fibre bundle,
this family of diffeomorphisms is not quite enough to define a connection
on a principal fibre bundle. Additionally, we require that P tγ : Pγ(0) → Pγ(t)

be G-equivariant. This means that for any u ∈ P and g ∈ G, we have

P tγ(ug) = P tγ(u)g.

Remark 2.3.6. It should be reiterated that this construction is dependent on
the choice of the horizontal subspace. Since there are in general infinitely
many choices, it is not always clear as to what constitutes a ‘good’ choice of
horizontal subbundle, although we will further develop this notion later.

Definition 2.3.7 ([28], page 12). Let M be a smooth manifold. Then, a 1-
parameter group of diffeomorphisms is a smooth map ϕ : R ×M → M such
that

1. For each t ∈ R, the map ϕt := ϕ(t, ·) : M →M is a diffeomorphism.

2. For all t, s ∈ R and u ∈M there holds ϕt+s(u) = ϕt(ϕs(u)).

Each 1-parameter group induces a vector field X ∈ Γ(TM) as follows:
For each x ∈M ,Xx is the tangent vector to the curve t 7→ γt(x) at x = ϕ0(x).
Conversely, each X ∈ Γ(TM) generates a local 1-parameter group of diffeo-
morphisms, although this is the content of Proposition 1.5 of [28] and we
refer there for the precise statement and proof.

Now, let x ∈M and α : [0, 1]→M be such that α(0) = x and α′(0) = X .
Then by Lemma 2.3.5 we have that there exists a horizontal path α̃ : [0, 1]→
P such that α̃(0) = u and α̃′(0) ∈ HuP . We then define

Horu : TxM → TuE

α′(0) 7→ α̃′(0).

This map is well defined and independent of the choice of α, and this fol-
lows from Lemma 2.3.5. Moreover, by the uniqueness of the horizontal
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lift, it is injective. Suppose then, that for a path γ : [0, 1] → M such that
γ(0) = x, γ̇(0) = X ∈ TxM , and let u ∈ Pπ(u). Then

Horug(X) =
d

dt
P tγ(ug)

∣∣
t=0

=
d

dt
Rg ◦ P tγ(u)

∣∣
t=0

= (Rg)∗
d

dt
P tγ(u)

∣∣
t=0

= (Rg)∗Horu(X).

With this, we then have formulated the extra condition which a connection
on a principal bundle must satisfy.

Definition 2.3.8. A connection on a principal fibre bundleG ↪→ P →M is a
smooth distribution HP on TP such that HP ⊕V P = TP , HP ∩V P = {0}
and

HugP = (Rg)∗HuP.

Remark 2.3.9. Note the similarity between the definition of a connection on
a principal fibre bundle and a connection on a fibre bundle. This shouldn’t
be surprising, as a principal fibre bundle is first and foremost a fibre bundle.
It is the extra structure which turns it into a principal fibre bundle which
necessitates the extra condition on the definition of a connection, as we saw
above.

We now describe a way of explicitly constructing this horizontal sub-
space. This will lead us to our next definition of a connection on a principal
fibre bundle, and we will show that it is equivalent to our first definition.

Definition 2.3.10. Let G ↪→ P → M be a principal G-bundle over M and
g the Lie algebra of G. Let A ∈ g and t 7→ exp(tA) a path in G. Then, the
1-parameter group of diffeomorphisms

ϕ : R× P → P

(t, u) 7→ u · exp(tA)

for any u ∈ P induces a vector field A# on P . We call A# the fundamental
vector field corresponding to A.

A first consequence of this definition is that since the action of G on P

preserves fibres,A#
u is always vertical for any u ∈ P , and in fact any v ∈ VuP

is such that v = A#(u) for some A ∈ g.

Definition 2.3.11. Let G ↪→ P → M be a principal fibre bundle. A connec-
tion on P is a smooth g-valued 1-form A which satisfies the following two
conditions:

(i) (Rg)
∗ω = Adg−1 ◦ ω for all g ∈ G,

(ii) ω(A#) = A for all A ∈ g.

We will now show how this definition uniquely determines a horizontal
subbundle of TP , and therefore diffeomorphisms with which we can define
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the covariant derivative. We claim that by defining

HuP := {v ∈ TuP : ωp(v) = 0}

we recover the first definition of a connection on a principal fibre bun-
dle. Firstly, note that HuP ∩ VuP = {0} for any u ∈ P , since if there
exists non-trivial v ∈ HuP ∩ VuP , then v = A#(u) for some A ∈ g and
ωu(v) = 0 = ωu(A#(u)) = ω, and so v = 0. To show that that HuP ⊕ VuP =
TuP , it suffices to show that dimHuP + dimVuP = dimTuP , which fol-
lows from the rank-nullity theorem if one considers the surjective map
π∗ : TuP → Tπ(u)M with kernel VuP .

To show that this definition implies that HugP = (Rg)∗HuP , note that
condition (i) implies that for v ∈ Tug−1P ,

Au((Rg)∗ug−1(v)) = Adg−1ωug−1(v).

Therefore, if v ∈ HuP , then

ωug((Rg)∗u(v)) = ωug((Rg)∗ugg−1(v))

= Adg−1(ωu(v))

= 0,

and so HuP ⊆ (Rg)∗HugP . Next, suppose that w ∈ HugP . Since (Rg)∗u
is an isomorphism, there exists v ∈ HuP such that w = (Rg)∗u(v), and we
must show that v ∈ HuP . Note, however, that ωu(v) = ωu((Rg−1)∗ug(w)) =
Adg(ωug(w)) = 0. Therefore the reverse inclusion is proven, and we have
that Definition 2.3.11 implies Definition 2.3.8. To see that Definition 2.3.8
implies Definition 2.3.11, one must simply reverse the above arguments.
The diagramme below represents the G-equivariance of the horizontal sub-
bundle diagrammatically and is taken from [37], Chapter 10.

FIGURE 2.2: The horizontal subspace is preserved by the
pushforward of the right action

Before moving on, we briefly pause to introduce the notion of the space
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of horizontal p-forms. These are a generalisation of the form ω in the sense
that ω is a horizontal Ad-equivariant 1-form.

Definition 2.3.12. Let G ↪→ P → M be a principal fibre bundle. Then we
define

Ωp
Ad(P ; g)

to be the space of all horizontal g-valued, Ad-equivariant p-forms.

Now, given ω a g-valued one form on P , one may define the exterior
covariant derivative to be

dω : Ωp
Ad(P ; g)→ Ωp+1

Ad (P ; g)

by having dη act only on horizontal vectors for η ∈ Ωp
hor(P ; g), ie

dωη(X1, ..., Xp+1) = dη(hX1, ..., hXp+1),

where hXi is the horizontal component of Xi as determined by ω. For X,Y
smooth vector fields on M , we define the curvature of ω to be

Ω := dωω.

Note that

dωω(X,Y ) = dω(hXh, hYh)

= (hXh)ω(hYh)− (hYh)ω(hXh)− ω([hXh, hYh])

= ω([hXh, hYh]),

and so we see that Ω(X,Y ) = 0 if and only if [hXh, hYh] ∈ HE, and so
one can interpret the curvature as a measure of the lack of integrability
(in the sense of Frobenius) of the horizontal subbundle determined by ω.
See, for example, [31] Chapter 1.4, for more on integrability in the sense of
Frobenius.

Theorem 2.3.13 (Cartan Structure equation). Let G ↪→ P → M be a smooth
principal G-bundle with connection form ω and let Ω be the curvature of ω. Then

Ω = dω + ω ∧ ω.

Proof. By linearity, we must check the following three cases:

(i) v and w are vertical vectors,

(ii) v is vertical and w is horizontal,

(iii) v and w are both horizontal.

In case (i) and (ii) we have that Ω(v, w) = 0, so we must show that dω(v, w)+
ω ∧ ω(v, w) = 0. In the case that v and w are both vertical, we have that
dω(v, w) = vω(w) − wω(v) − ω([v, w]). Recall that since v, w are both ver-
tical, they are the fundamental vector field of some elements A,B ∈ g, so
we have that v = A#, w = B#, and so ωu(A#(u)) = A,ωu(B#(u)) = B
for all u in Pπ(u). Therefore A#(ω(B#)) = B#(ω(A#)) = 0, since tangent
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vectors annihilate constant functions. Therefore, we have that ω([v, w]) =
ω ∧ ω(v, w) = [ω(v), ω(w)], which is true, although is non-trivial to show -
see, for example, Proposition 5.8.8 of [36].

If w is horizontal and v is vertical, then we have that w = B# for some
B ∈ g, as before. Furthermore, we have that ω ∧ ω(v, w) = 0, since ω is a
horizontal form. We must show, then, that dω(v, w) = 0. By definition, we
have that dω(v, w) = v

(
ω(w)

)
−w

(
ω(v)

)
−ω([v, w]). Moreover, since ω(B#)

is a constant map and ω(v) = 0 since v is horizontal, the proof boils down
to showing that ω([v, w]) = 0. We must show, then, that [v, w] is horizontal.
Since w = B# is a fundamental vector field, it is induced by a 1-parameter
family of diffeomorphisms b(t) = exp(tB), we have that

[v, w] = lim
t→0

Rb(t)∗w − w
t

,

and since w is horizontal, we have that Rb(t)∗w is horizontal by Definition
2.3.8, and so it follows that [v, w] is horizontal, and so ω([v, w]) = 0.

In the last case, we have that v, w are both horizontal, and the equality
follows immediately from the definition of Ω.

Remark 2.3.14. Throughout the literature on the subject of gauge theory
and principal bundles various authors adopt various conventions about
how to denote the the wedge product of Lie algebra valued forms where the
bilinear map used to construct the wedge product is the Lie bracket. All of
these are equivalent, and this can be seen if written out in local co-ordinates.
For example, other common notation denotes the wedge product of Lie al-
gebra valued differential forms as 1

2 [ω, ω] = 1
2 [ωi, ωj ]dx

i ∧ dxj , and we see
that this is in fact equivalent to our notation since ω ∧ ω = ωiωjdx

i ∧ dxj =
1
2 [ωi, ωj ]dx

i∧dxj , where ωi, ωj ∈ g. Other common notation includes [ω∧ω]
and 1

2 [ω ∧ ω]. It should be noted that these different notations, although
equivalent, will differ by when a factor of 1

2 is included. For this reason,
one method of notation should be adopted and adhered to, so as to avoid
erroneous multiplicative factors.

Perhaps unsurprisingly, we have that the curvature satisfies:

R∗gΩ(X,Y ) = Adg−1 ◦ Ω(X,Y ),

where g ∈ G andX,Y ∈ Γ(TM). To see this, note that the exterior covariant
derivative commutes with pull-backs - see, for example, Chapter 5.7 of [36].
We have then that

R∗gΩ(X,Y ) = R∗gdω(hX, hY )

= d
(
R∗gω

)
(hX, hY )

= d
(
Adg−1 ◦ ω

)
(hX, hY ).

Now, Ad is a linear transformation and so commutes with d, and so we
have that

R∗gΩ(X,Y ) = Adg−1 ◦ Ω(X,Y ).
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2.4 Associated Bundles

The associated bundle is a crucial link between the theory of vector and
principal fibre bundles. Principal and vector bundles represent different
settings physically, although the same information is encoded in each. As
in the case with connections, the study of associated bundles can be con-
structed very generally, and we present the general theory initially before
specialising our attention to the case which interests us the most - the case
of associated vector bundles.

Let G ↪→ P →M be a principal fibre bundle with action σ : P ×G→ P
given by σ(u, g) = u · g and let F be a smooth manifold on which G acts
smoothly on the left. We define an action on P × F given by

(P × F )×G→ P × F
((u, ξ), g) 7→ (u · g, g−1 · ξ)

for all g ∈ G and f ∈ F . We then define an equivalence relation as follows:
(u1, ξ1) ∼ (u2, ξ2) if and only if there exists a g ∈ G such that (u2, ξ2) = (u1 ·
g, g−1 ·ξ1). We denote the equivalence class [u, v] := {(u ·g, g−1 ·ξ) : g ∈ G}.
We then denote P ×G F the orbit space of P ×G F modulo this action, and
we equipt P ×G F with the quotient topology. We then define a mapping
πG : P ×G F → M by πG([u, ξ]) = π(u). This map is well defined, since
π(u · g) = π(u). Now, to check that P ×G F has the local trivialisation
properties required of a fibre bundle, let U be an open subset in M and
ψ : π−1(U) → U × G, and let s : U → π−1(U) be the canonical section. We
then define a map Φ̃ : U × F → π−1

G (U) by

Φ̃(x, ξ) = [s(x), ξ].

Note that πG(Φ̃(x, ξ)) = πG([s(x), ξ]) = π(s(x)) = x, and so Φ̃ does in fact
map into π−1

G (U). Note that since [u · g, ξ] = [u, g · ξ] we get that for a fixed
point u ∈ π−1(x), π−1

G (x) = {[u, ξ] : ξ ∈ F}. Therefore

π−1
G (U) =

⊔
x∈U

π−1
G (x).

One can check that this map diffeomorphism, although we refer to page
381 of [36], for example, for a proof. Now, it is actually the inverse of this
map which is the trivialisation we are after. Define

Ψ̃ : π−1
G (U)→ U × F

[s(x), ξ] 7→ (x, ξ).

Likewise, this map is a diffeomorphism. Therefore (P ×G F,M, πG, F ) is a
locally trivial bundle. Now, let Uα and Uβ be two open sets in M with non-
emphy intersection and corresponding trivialisations Ψ̃α, Ψ̃β , respectively.
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Then

Ψ̃α ◦ Ψ̃β(x, ξ) = Ψ̃α([sβ(x), ξ])

= Ψ̃α([sα(x) · ψαβ(x), ξ])

= Ψ̃α([sα(x), ψαβ(x) · ξ])
= (x, ψαβ(x) · ξ)

which is smooth, since the transition functions on P and the left action on
F are smooth. Therefore Ψ̃α, Ψ̃β has the structure of a smooth fibre bundle,
and we call it the fibre bundle associated with P given by the action of G
on F.

Example 2.4.1. Throughout this thesis there will be several associated bun-
dles of major importance.

(i) The main setting for our analysis in subsequent chapters will be vector
bundles. Given a principal bundle, a vector space and a smooth left
action of the structure group on this vector space, one can construct
an associated vector bundle as above where F ' V , where V is a finite
dimensional vector space. In this case, we may define a representation
ρ : G → GL(V), and we denote the total space of the corresponding
associated bundle by P ×ρ V . In particular, let E be a vector bundle
of rank n with structure group G ⊆ SO(n) with corresponding frame
bundle G ↪→ F (E) → M . We then have that there is a canonical
isomorphism F (E) ×ρ V ' E if ρ is the identity representation. This
isomorphism should not be surprising, since both bundles have the
same trivialisations, although we refer to, for example, Chapter 18.3
of [34] or Example 1 on page 124 of [51] for an explicit proof. In such
a way, we may consider a vector bundle as being a bundle associated
to its frame bundle.

(ii) Another associated bundle of central importance is the automorphism
bundle Aut P = P ×G G, where the action is the Adjoint action of G
on G. To motivate the name, consider the following: Let the smooth
right action of G on G in the definition of the principal fibre bundle be
multiplication from the right, and recall that a local gauge is given by
s : U → P and that a gauge transform is a bundle automorphism
Φ : π−1(U) → π−1(U) such that Φ(pg) = Φ(p)g for p ∈ P and g ∈
G. Note that each bundle automorphism defines a map ϕ : P → G
such that Φ(s(x)) = s(x)ϕ(s(x)) for all x ∈ U . Therefore, we see that
ϕ(s(x)g) = g−1ϕ(s(x))g, and this defines a section

S : U → Aut P
x 7→ [p, ϕ(p)]

where p ∈ π−1(x) is arbitrary. Conversely, any section of Aut P de-
fines an Ad-equivariant function ϕ, and thus a bundle automorphism
of P . Therefore, it is often convenient to think of a gauge transforma-
tion as a section of Aut P . Since the composition and inverse of an
automorphism is still an automorphism, we find that the elements of
Aut P form a group under composition, which we call the gauge group,
and denote G. Note that this definition agrees with Definition 2.2.11.
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(iii) The last associated bundle of major importance in the following the-
ory is the adjoint bundle ad P = P ×Ad g. This is the vector bundle
associated with P with standard fibre g (as a vector space) given by
the Adjoint representation on g

Ad : G→ Aut(g)

g 7→ Adg

where

Adg : g→ g

A 7→ gAg−1.

We will show shortly that connections on P can be considered as a
section of Ω1(ad P ).

Given an associated vector bundle, we would like a way to consider
sections of it. Let G ↪→ P → M be a principal G-bundle and P ×ρ V the
vector bundle of rank n associated to P by the left G-action on V . Assume
that the action of G on P is given by multiplication on the right. For an
open U ⊆M , a map φ : π−1(U)→ V is said to be ρ-equivariant if

φ(ug) = ρ(g−1)φ(u)

for all u ∈ π−1(U) and g ∈ G. Note that this generalises the Ad-equivariance
of ω in Definition 2.3.11 (i). With such a map we may construct a local sec-
tion of sφ : U → P ×ρ V as follows: Let x ∈ U and select an arbitrary
u ∈ π−1(x). The pair (u, φ(u)) dertermines a point [u, φ(u)] ∈ P ×ρ V , and
this point is independent of the choice of u ∈ π−1(x) since G acts freely on
the fibres of P and by the equivariance of the map. Therefore, the map

sφ(x) = [u, φ(u)]

for any u ∈ π−1(x) is well defined. By varying x ∈ U , we see that this
defines a smooth section sφ : U → π−1

ρ (U). Conversely, given a smooth
section s : U → π−1

ρ (U), we define a map φs : π−1(U) → Rn as follows:
Let u ∈ π−1(U), then x = π(u) ∈ U , so s(x) ∈ π−1

ρ (x). There is then
a unique element, which we call φs(u) ∈ Rn, such that s(x) = [u, φs(u)].
Then, for any u ∈ π−1(U) and any g ∈ G we have we define φs(ug) as
follows: Since π(ug) = π(u) = x, φs(ug) is the unique element of Rn such
that s(x) = [ug, φs(ug)]. From the definition of the quotient map, how-
ever, we have that s(x) = [u, φs(u)] = [ug, ρ(g−1)φs(u)], which implies that
ρ(g−1)φs(u) = φs(ug) = ρ(g−1)φs(u), and so φs : π−1(U) → V is an equiv-
ariant map. Furthermore, s 7→ sφ and φ 7→ φs are inverses of eachother,
and we see that there is a bijection between equivariant V-valued maps of
P and sections of P ×ρ V .

We may in fact go further than concluding a bijection between the space
of ρ-equivariant horizontal V-valued maps of P and the sections of P ×ρ V
and assert that there exists a canonical isomorphism

Ωk
ρ(P ;V) ' Ωk(P ×ρ V),
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where by Ωk
ρ(P ;V) we mean the space of ρ-equivariant horizontal V-valued

p-forms. Although the isomorphism is canonical, we refer to the literature
for a proof - for example Chapter 19.4 of [34]. Since ω ∈ Ω1

Ad(P ; g), we
may consider it as a section of Ω1(ad P ) under the canonical isomorphism.
With this isomrphism we will be able to give an explicit formulation of the
exterior covariant derivative of bundle-valued differential forms. Towards
such ends, we have the following theorem, although we refer to, for exam-
ple, Theorem 4.5.6 of [35] for a proof.

Theorem 2.4.2. Let G ↪→ P → M be a smooth principal fibre bundle with con-
nection form ω, V a finite dimensional vector space, ρ : G → GL(V) a repre-
sentation of G on V and ϕ ∈ Ωk

ρ(P ;V), a horizontal, ρ-equivariant k-form on P .
Then

dωϕ = dϕ+ dρ ∧ ϕ.

Here, and in the following, dρ : g → gl(V) is the differential of the
representation defined as

dρ(A) =
d

dt
ρ(exp(tA))

∣∣∣
t=0

In particular, we have ϕ ∈ ad P that

dωϕ = dϕ+ [ω, ϕ],

since the differential of the Adjoint action is the adjoint action.

Remark 2.4.3. There appears to be a lack of consistency in our definition of
the wedge product of Lie algebra valued forms and what have written for
dωϕ for ϕ ∈ ad P . Note, however, that by [ω, ϕ], we mean that

[ω, ϕ] = ω ∧ ϕ− ϕ ∧ ω,

and so there is no inconsistency in our notation.

We may now prove the first Bianchi identity.

Theorem 2.4.4 (First Bianchi identity). LetG ↪→ P →M be a smooth principal
G-bundle with connection ω and curvature Ω = dωω. Then

dωΩ = 0.

Proof. We compute directly that

dωΩ = dΩ + [ω,Ω]

= ddω + dω ∧ ω − ω ∧ dω + [ω, dω] + [ω, ω ∧ ω]

= [ω, ω ∧ ω]

= [ωidx
i, ωjωkdx

j ∧ dxk]
= ωiωjωk(dx

i ∧ dxj ∧ dxk − dxj ∧ dxk ∧ dxi)
= 0



24 Chapter 2. Gauge Theory

Consider now a vector bundle E := P ×ρ V associated to P where ρ is
the identity representation on E. Let

D : Γ(E)→ Ω1(E)

be a connection on E. We may equivalently consider

D ∈ Ω1(E)⊗ (Ω0(E))∗ = Ω1(End E),

where Ω1(End E) is the bundle of fibre-preserving endomorphisms of E.
To see that G acts on End E by the Adjoint action, we refer to Section 2.5.2.
We have then, that End E is a vector bundle with standard fibre gl(V) on
which G acts by the Adjoint action, and so ad P ⊆ End E. Moreover, each
connection on E can be written in local co-ordinates as

D = d+A,

where A ∈ gl(V). For a proof of this, see, for example, Chapter 4 of [27]. For
a connection induced by ω, we see that D = d + s∗ω, where s : U → P is a
local gauge. Therefore, for a connection on E induced by a connection on
P , we find that in local co-ordinates we can write

D = d+A =: dA,

where A ∈ g. Similarly, for ϕ ∈ Γ(E), we identify dAϕ with dωϕ
′, where

ϕ′ ∈ Ω0
ρ(P ;V)so that

dAϕ = dϕ+A ∧ ϕ.

Induced connections on vector bundles have the following properties:

• The connection induced on Ω0(E) is called the covariant derivative, is
denoted ∇ and is a map

∇ : Γ(E)→ Γ(E)⊗ Γ(T ∗M),

where∇σ(V ) =: ∇V σ for σ ∈ Γ(E), V ∈ TxM with the properties:

– ∇ is tensorial in V :

∇V+Wσ = ∇V σ +∇Wσ for V,W ∈ TM, σ ∈ Γ(E)

∇fV σ = f∇V σ for f ∈ C∞(M,R), V ∈ Γ(TM).

– ∇ is R-linear in σ:

∇V (σ + τ) = ∇V σ +∇V τ for V ∈ TxM, σ, τ ∈ Γ(E).

– ∇ satisfies the Liebniz Rule:

∇V (fσ) = V (f) · σ + f∇V σ for f ∈ C∞(M,R).

– We may locally identify∇ = d+A =: ∇A, whereA ∈ Γ(g⊗T ∗M)
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• They are metric, which means that for all µ, ν ∈ Ω0(E), we have

d〈µ, ν〉 = 〈∇µ, ν〉+ 〈µ,∇ν〉,

where 〈·, ·〉 is a bundle metric, see, for example, Chapter 2 of [27].

• The induced connection on Ωp(E) is called the exterior covariant deriva-
tive, is denoted dA and has the following properties:

– dA = ∇A on Ω0(E)

– dA(ω ∧ θ) = (dω) ∧ θ + (−1)pω ∧ (dAθ) for ω ∈ Ωp(M) and θ ∈
Ωq(E)

– The L2 dual to the operator dA is defined as d∗A : Ωk+1(E) →
Ωk(E), where

(dAµ, ν) = (µ, d∗Aν),

for any µ ∈ Ωk(E), ν ∈ Ωk+1(E), where

(·, ·) = 1
2

∫
M
〈·, ·〉 ∗ (1) and ∗ : Ωk(E) → Ωn−k(E) is the Hodge

star operator - see, for example, Chapter 22.6 of [21].

• The Hodge Laplacian ∆A := d∗AdA + dAd
∗
A and the rough Laplacian

∇∗A∇A are associated by the Weitzenböck identity: For φ ∈ Ωk(E), we
have

∆Aφ = ∇∗A∇Aφ+ Rm#φ+ FA#φ, (2.5)

where # is any multilinear map with smooth co-efficients and Rm is
the Riemannian curvature. This can be written out exactly, but we
will not need this, and so we refer to Theorem 4.3.3 of [27], among
other places, for the exact formulation.

• The curvature of an induced connection dA is given by FA := dA ◦ dA,
and locally can be written as

FA = dA+A ∧A,

When written out in local co-ordinates, we have

(Fij) =
1

2

(
∂Ai
∂xj
− ∂Aj
∂xi

+ [Ai, Aj ]

)
dxi ∧ dxj .

• The curvature of an induced connection also satisfies the first and sec-
ond Bianchi identities:

dAFA = 0

d∗Ad
∗
AFA = 0.

To show that dAFA = 0 is almost identical to Theorem 2.4.4, and so we
refer to, for example, Theorem 4.1.1 of [27] for a proof. That d∗Ad

∗
AFA =

0 is called the second Bianchi identity, and can be shown by noting
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that for φ ∈ Ω0(ad P ), we have

(d∗Ad
∗
AFA, φ) = (FA, dAdAφ),

= (FA, [FA, φ])

= 0,

where (·, ·) is the inner product defined in section 2.7 and the last step
follows by the cyclic property of the trace inner product.

2.5 Transformation Laws

Since objects in differential geometry are in general only described locally,
we describe briefly how connections and curvature transform under gauge
changes and changes of co-ordinates. In this section we briefly describe
the transformation behaviour of objects in both the principal, and vector
bundle setting.

2.5.1 Principal Bundles

We briefly describe here the transformation laws associated witht he local
descriptions of objects on principal bundles. We present this primarily for
completeness, since it will be the transformation laws of vector bundles
which we will use in the following chapters. Everything in this subsection
is common in literature, and can be found at, for example, Chaters 5 and 6
of [36] and Chapter 2 of [35].

On any principal bundle, there exists a distinguished Lie-algebra valued
1-form called the Cartan 1-form, denoted by θ. This is the one-form which
sends each left invariant vector field on G to its generator at TeG. Namely,
we have that for each g ∈ G, θ(g) = θg : Tg(G)→ g is given by

θg(v) = (Lg−1)∗g(v)

for each v ∈ Tg(G). Now, let (Uα, ψα) a trivialisation of P such that
Uα ∩ Uβ 6= ∅. Recall now the canonical section sα(x) := ψ−1

α (x, e). We then
define a local connection form by

ωα := s∗αω,

and this completely determines ω on π−1(Uα). This is known in the physics
literature as the local gauge potential. We also define the local curvature form
as

Ωα := s∗αΩ,

and this is known in the physics literature as the local field strength. In local
co-ordinates, we have that the local curvature form is given by

Ωα := dωα + ωα ∧ ωα,

which is perhaps unsurprising. For a proof, we refer to, for example, page
350 of [36]. Now, suppose that we have two trivialisations (Uα, ψα), (Uβ, ψβ)
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such that Uα ∩ Uβ 6= ∅. To each trivialisation we have the canonical cross
sections sα, sβ ∈ Γ(P ) and the local curvature forms ωα, ωβ ∈ Ω1(M ; g).
We also have the transition function (also known as a local gauge change)
ψαβ : Uα ∩ Uβ → G. The transformation law is then given by:

ωβ = ψβαωαψαβ + ψ∗αβθ,

and one can show, although we refer to, for example, page 305 of [36] for a
proof, that this is equivalent to

ωβ = ψβαωαψαβ + ψβαdψαβ. (2.6)

To motivate the transformation law for a canonical section of a principal
bundle and recall the transition law, Definition 2.2.6, and note the following:

sβ(x) = ψ−1
β (x, e)

= ψ−1
α (x, ψαβ(x))

= sα(x)ψαβ(x).

Now, letE := P×ρV be a vector bundle associated to P by a representation.
Then suppose that σα : Uα → E and σβ : Uβ → E are sections of E such
that Uα ∩ Uβ 6= ∅. The corresponding transformation law on is given by:

σβ = ρ(ψ−1
αβ )σα. (2.7)

Therefore, since we may view the curvature as a section of Ω2(ad P ), we
have that it transforms as

Ωβ = ψβαΩαψαβ. (2.8)

2.5.2 Vector Bundles

As always, let M be a smooth, finite dimensional, compact, orientable,
boundary-free Riemannian manifold. Let P be a principal bundle and
E := P ×ρ V , where ρ : G → GL(V) is a representation on V , a finite
dimensional vector space. Firstly, consider the case where V = Rn and ρ
is the identity representation. Suppose we have a cover {Uα} and ψαβ :
Uα∩Uβ → G, where G ⊆ SO(n,R) is the structure group of the bundle. Let
µα, µβ ∈ Γ(E) defined on Uα and Uβ , respectively. Recall that by equation
(2.7) we must have

µβ = ρ(ψ−1
αβ )µα

= ψβαµα.

When one considers sections of Ω1(E), we must similarly have

ψβα(d+Aα)µα = (d+Aβ)µβ

ψβα(d+Aα)ψαβµβ = (d+Aβ)µβ

(d+ ψβαdψαβ + ψβαAαψαβ)µβ = (d+Aβ)µβ.

Therefore, we get that Aβ = ψβαdψαβ +ψβαAαψαβ describes the transforma-
tion behaviour of the connection forms. Note that dA does not transform as a
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tensor, but the difference of two connections does. The space of all connec-
tions on a given vector bundle E is therefore an affine space with underlying
space Ω1(ad P ). Similarly, if one considers the curvature as a section of
Ω2(ad P ), we must have

Fβ = ψβαFαψαβ,

and so in contrast to connection forms, the curvature transforms as a tensor.

Now, let S ∈ G = Aut P , and dA ∈ Ω1(ad P ), then, we have that S acts
on dA by conjugation. Therefore S∗(dA) = S−1 ◦ dA ◦ S. If σ ∈ Γ(E), then
we have

S∗(dA)σ = S−1 ◦ dA(Sσ)

= S−1(d+A)(Sσ)

= dσ + S−1(dS)σ + S−1ASσ.

Therefore, we can see that S∗(A) = S−1dS + S−1AS describes the trans-
formation behaviour of connections under gauge changes. Similarly, since
FA ∈ Ω2(ad P ), we have that

S∗FA = S−1 ◦ FA ◦ S.

Similarly, if Sα, Sβ ∈ G are two local gauge transformations, on the overlap
Uα ∩ Uβ , we have that

Sβ = ψβαSαψαβ

2.6 Equivalence of the Vector Bundle Approach to Gauge
Theory

In this section we give a brief explanation of the equivalence of our con-
struction and the approach where vector bundles are exclusively consid-
ered. Recall from section 2.2.2 that, given a vector bundle of rank n, E,
there exists a distinguished principal bundle F (E), called the frame bundle.
We saw in example 2.4.1 (i) that each vector bundle is canonically isomor-
phic to the vector bundle associated to F (E) via the identity representation.

In Section 2.4 we stated the properties of connections on vector bun-
dles which are induced by connections on principal bundles. For the vector
and principal bundle approaches to be equivalent it must be true that every
connection on a vector bundle with these properties arises as an induced
connection on its frame bundle. For the case of vector bundles this is in fact
true that every metric connection on a vector bundle is induced from a con-
nection on its frame bundle, although we refer to, for example, Chapter 11.9
of [34] for the proof. Specifically for vector bundles, a connection is metric
if and only if its connection form takes its values in g, the Lie algebra of the
structure group G of the vector bundle, although we refer to, for example,
Proposition 3.22 of [58] for a proof. We have then, that a connection on a
vector bundle is induced by a connection on its frame bundle if and only if
the corresponding connection forms in compatible trivialisations take their
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values in g. It should be reiterated that this is in general not the case, but
in most applications this equivalence will be taken advantage of without
specific mention to any theorems.

Many sources do away with reference to the frame bundle all together
and refer to the endomorphism bundle End E, which is the bundle of en-
domorphisms of E which fixes the base manifold and preserves fibres. We
have the canonical isomorphism:

End E ' ad F (E).

We refer to, for example, Example 4.9 of [3] for a proof, although we note
that this isomorphism should not be difficult to motivate, seeing as both
bundles have the same trivialisations. It is common in literature to refer to
this as ad E or Ad E in order to make contact with the theory of principal
bundles.

It should not be surprising since E is associated to F (E) by the identity
representation that we have the canonical isomorphism

G := Aut F (E) ' Aut E :=
⊔
x∈M

Autx E

where Aut E is the bundle automorphisms which fix the base manifold and
preserves fibres. Again, this follows from the fact that both bundles have
the same trivialisations, although we note that a proof appears as Proposi-
tion 2 of Part 1.1 in [39], amongst other places.

We have then, that one may equivalently consider vector bundles and
work with exactly the same information as in the principal bundle case.
Namely, if we have a vector bundle E over M , then we have:

• The gauge group G := Aut E,

• The endomorphism bundle ad E,

• Every metric connection can be considered as an element of Ω1(ad E),
and the curvature as a section of Ω2(ad E).

• The structure group of E acts on G by conjugation,

• G acts on ad E by the Adjoint action.

• With respect to the inner product which we will introduce in section
2.7, we have that |Ω|2 = |FA|2, although we refer to Corollary 19.16 of
[34], for example, for a proof.

This structure is induced from the principal bundle structure of the frame
bundle, although it is common to make no reference to the frame bundle
and only consider the vector bundle. Although vector and principal bun-
dles represent different structures in physcis, we see that mathematically
they contain the same information, and it constitutes no loss of generality
to pass back and forth between the approaches as is convenient.



30 Chapter 2. Gauge Theory

2.7 The Yang–Mills Functional

Let M be a smooth, compact, finite dimensional, oriented, boundary-free
Riemannian manifold of dimension m. We discussed previously that it is
equivalent to consider a vector bundle E over M or its associated frame
bundle F (E), and so in keeping with the notation of the literature which
we will later analyse we will adopt the vector bundle approach.

Let E be a smooth vector bundle of rank n over M with G-structure.
We are under the standing assumption that G and g are compact, and so
we have the natural trace inner product on g given by the negative of the
Killing form, i.e.

A ·B = − tr(AB)

forA,B ∈ g. With this and the inner product on p-forms, we may introduce
a pointwise scalar product for µ1 ⊗ ω1, µ2 ⊗ ω2 ∈ adx ⊗ ∧pT ∗xM by

〈µ1 ⊗ ω1, µ2 ⊗ ω2〉 := µ1 · µ2〈ω1, ω2〉,

where we define

〈ω1, ω2〉 = ∗(ω1 ∧ ∗ω2).

This yields by linear extension an L2 inner product on Ωp(ad E) by

(µ1 ⊗ ω1, µ2 ⊗ ω2) :=
1

2

∫
M
〈µ1 ⊗ ω1, µ2 ⊗ ω2〉 ∗ (1).

Definition 2.7.1. Let M be a compact, oriented Riemannian manifold, E
a vector bundle over M , dA a metric connection on E with corresponding
curvature FA ∈ Ω2(ad E). The Yang–Mills functional is then defined as

YM(A) := (FA, FA) =
1

2

∫
M
〈FA, FA〉 ∗ (1),

and critical points of this functional are called Yang–Mills connections.

Note that under this definition, and since the G acts on FA by conju-
gation and we are assuming that M is oriented and Riemannian so that
G ⊆ SO(n), we have that the Yang–Mills functional is gauge invariant -see,
for example Theorem 4.2.1 of [27].

As mentioned in the introduction, the Yang–Mills functional is critical in
dimension four in two senses. Analogously to the case of harmonic maps,
where the Dirichlet energy is invariant under conformal transformations of
the base manifold in dimension n = 2, the Yang–Mills energy is invariant
under conformal transformations of M in dimension n = 4 - see, for exam-
ple, [42]. The other sense in which the functional is critical in dimension
four is that the Sobolev embeddingH1 ↪→ L4 is critical, although the signif-
icance of this will be discussed later in Section 3.1.

Since the space of metric connections on E is an affine space, dA + tB
for B ∈ Ω1(ad E) is also a metric connection. Note that when acted on
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σ ∈ Γ(E), we have

FdA+tB(σ) = (dA + tB)(dAσ + tBσ)

= FA(σ) + tdA(Bσ) + tB ∧ dAσ + t2(B ∧B)σ

= FA(σ) + t(dAB)σ + t2(B ∧B)σ.

Consequently, we have

d

dt
YM(dA + tB)|t=0 =

1

2

d

dt

∫
M
〈FdA+tB, FdA+tB〉 ∗ (1)

=

∫
M
〈dAB,FA〉 ∗ (1)

=

∫
M
〈B, d∗AFA〉 ∗ (1).

Therefore, since B was arbitrary, we have that dA is a critical point of the
Yang–Mills functional if and only if

d∗AFA = 0. (2.9)

Note that this is a second order nonlinear PDE, and, when written out in
co-ordinates it reads

∂Fij
∂xi

+ [Ai, Fij ] = 0.

Note that by the gauge invariance of solutions the Yang–Mills equation is
non-elliptic.

2.8 Electromagnetism as an Abelian Gauge Theory

As we have previously mentioned, Yang–Mills theory arose as an attempt
to generalise classical electromagnetism to more abstract settings. As such,
it is instructive to recast electromagnetism as an abelian gauge theory, both
to make contact with classical literature, and also to get a concrete idea of
what a gauge theory looks like in the wild.

We will consider the principal bundle approach, since this is a physi-
cal example and considering the vector bundle approach would add ad-
ditional complications which are unnecessary in demonstrating the theory.
We refer the reader who is interested in learning more about the physical
significance of vector bundles to Chapter 2.2 - 2.4 of [35].

Assuming that gravitational effects are neglected, the setting for clas-
sical electromagnetism is Minkowski spacetime, R1,3. As a differentiable
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manifold, this is diffeomorphic to R4, although it does not have a Rie-
mannian manifold structure, but rather a pseudo-Riemannian one. Rela-
tive to the standard basis of R1,3, {x0, x1, x2, x3}, we define the pseudo-
Riemannian metric ηαβdxα ⊗ dxβ , where

η = (ηαβ) = η−1 = (ηαβ) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Consider then the principal fibre bundle U(1) ↪→ P → M , where M is a
submanifold of R1,3 with the metric induced on M by restriction. If we
identify U(1) with the unit circle in C, then its Lie algebra is u(1) ' ImC.
Now, suppose that M has an open cover, and let Uα ∪ Uβ 6= ∅ and

ψαβ : Uα ∩ Uβ → U(1)

be the corresponding transition function. Recall from the transformation
law for local connection forms, equation (2.8), that

ωβ = ψβαωαψαβ + ψβαdψαβ.

Since an element of U(1) can be written as ψαβ(x) = e−iΛαβ , where Λαβ :
M → u(1) ' ImC valued function. Since U(1) is abelian, we have that

ωβ = ωα − idΛαβ.

We may think of Λ = ifαβ , where fαβ : M → R is a real-valued function,
and rewrite the transformation law as

ωβ = ωα + dfαβ, (2.10)

which should be familiar as the usual transformation laws for potentials in
Maxwell’s equations. Although in Maxwell’s equations we have that there
is a scalar and a vector potential, in gauge theory we have accomodated for
this by considering a four-manifold with the Minkowski metric.

Since u(1) is abelian, we have that ωα∧ωα = 0, and that the correspond-
ing local curvature form is given by

Ωα = dωα.

As a peculiarity of electromagnetism by virtue of the abelian gauge group,
we have that the local curvature forms agree on overlapping regions, not
just transform accordingly. This means that we have

Ωα = Ωβ

on Uα∩Uβ . This can be seen from the transformation law for local curvature
forms, equation (2.6), or one can simply look at the transformation law for
local curvature forms of electromagnetism, equation (2.10), and recall that
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d2fαβ = 0 for any fαβ , and so we have that

Ωα = dωα = dωβ = Ωβ.

If it is clear which co-ordinate patch we are working in, we will write F :=
Ωα and A := ωα, to be able to drop the reference to the co-ordinate patch
whilst avoiding ambiguity as to whether we mean the local or global con-
nection and curvature forms. Writing out the local curvature form in local
co-ordinates, we have

F =
1

2
Fijdxi ∧ dxj ,

where

Fij =
∂Aj
∂xi
− ∂Ai
∂xj

. (2.11)

This should be familiar as the Faraday tensor of electromagnetism. This is
a skew-symmetric two-form, and to make further contact with the physics
literature, we will write ~E = (E1, E2, E3), ~B = (B1, B2, B3), and

Fi0 = Ei

Fij = εijkB
k,

so that we find

(Fij) =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 , (2.12)

and the dual is given by F ij = ηikηj`Fk`, so that

(F ij) =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 .

One can verify that

∗ ∗ F = −F ,

so that the curvature form is anti self-dual. Such a property is particularly
important in the topological aspects of Yang–Mills theory, although any fur-
ther discussion would lead us far astray, and so we refer the interested
reader to, for example, Chapter 1.1.5 of [15] for a readable discussion on
self-dual and anti self-dual curvature forms and its significance.

Furthermore, one can easily check that

1

2
FijF ij = | ~B|2 − | ~E|2

1

4
Fij ∗ F ij = ~E · ~B
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are the two invariants of classical electromagnetic theory. Since U(1) is
abelian, the exterior covariant derivative acts as d, the Yang–Mills equations
are

d∗F = 0

dF = 0,

which in local co-ordinates is written as

∂F ij

∂xi
= 0

∂(∗F ij)
∂xi

= 0.

It is then purely computational to check that this yields

~∇× ~B − ∂ ~E

∂x0
= ~0

~∇ · ~E = 0

~∇× ~E +
∂ ~B

∂x0
= ~0

~∇ · ~B = 0,

which are, of course, the source-free Maxwell’s equations in a vacuum.

2.8.1 A Static Electric Charge

Now that we have developed electromagnetism as a gauge theory, let us
briefly review the case of an electric point charge. In classical electromag-
netism, we have that a scalar potential, ϕ, and a vector potential ~A, which
we write as (ϕ, ~A). Recall that the potentials are given by

~E = − ∂
~A

∂x0
−∇ϕ

~B = ∇× ~A.

For a static point electric charge, we have that ~B = 0 and ~E = −∇ϕ. In the
language of gauge theory, we say that

A = Aidxi =
−n
r
dx0,

where r2 = (x1)2 + (x2)2 + (x3)2 and n ∈ N. The Faraday tensor is then
given by

F =
n

r2
(x1dx1 + x2dx2 + x3dx3) ∧ dx0,

and so

~B = 0 ~E =
n

r2
(x1, x2, x3).
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Now, let M := R1,3 − {(x0, 0, 0, 0) ∈ R1,3 : x0 ∈ R} and consider P , a
principal U(1) bundle over M . We are able to stay in the realm of gauge
theory if we introduce characteristic classes, although such a detour would
be significant and unnecessary, and so we will stay with the notation of
classical electromagnetism and vector calculus. Now, it is clear that if ~E =
−∇ϕ for some scalar potential ϕ, then

∇× ~E = 0

automatically, so finding a scalar potential for ~E boils down to solving
Laplace’s equation

∆ϕ = 0

on R1,3, and we know that this has solutions. We therefore see that having
~∇· ~E = 0 is a necessary and sufficient condition for the existence of a globally
defined scalar potential, which means that A is globally defined, and so
there exists a globally defined section of P such that A = s∗ω, where ω
is a connection on P. This means that the principal fibre bundle of a point
electric charge must be trivial. In this way, the study of electric charges are
not topological, since all fields are represented by connections on the trivial
bundle.

2.8.2 Dirac’s Magnetic Monopole

Although a point electric charge is an excellent example, it does not reflect
the fundamentally topological nature of gauge theory, since the principal
bundle is necessarily trivial. This is not the case in general, and we find
that Dirac’s magnetic monopole is an instructive example of how topology
plays a crucial role in gauge theory. It will aso bring together some of the
theory which has been developed as motivating examples - in particular
the S1 ↪→ S3 → S2 Hopf fibration.

In 1931, Dirac considered the case of a point magnetic charge analogous
to the point electric charge of an electron in his paper [12] and further devel-
oped his ideas in [13]. In view of Coulomb’s law of for static electric point
charges, he noticed that a point magnetic charge at (0, 0, 0) ∈ R3 defined by

~E = 0, ~B =
g

r2
êr, r 6= 0, (2.13)

where (r, θ, φ) are the standard spherical co-ordinates in R3−{0, 0, 0}, and g
is a constant, the strength of the magnetic monopole. Now, ~B is determined
by a vector potential such that

~B = ∇× ~A.

Unlike the case for ~E, such a condition is not guaranteed. ~∇· ~B = 0 is clearly
necessary, since ~∇ · (~∇×A) = ~∇× (~∇× ~A) = 0 automatically. On the other
hand, it is certainly not sufficient, even on a simply connected domain, like
R1,3. One can see this by assuming that it is necessary and then deriving
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a contradiction by comparing the flux across the sphere S2 calculated di-
rectly, and calculated using Stokes’ theorem. For this calculation, see, for
example, Chapter 0.2 of [36].

It is possible, however, to locally define vector potentials. Recall the cur-
vature matrix, equation (2.12), and set Ei = 0, we then have

(Fij) =


0 0 0 0
0 0 x3 −x2

0 −x3 0 x1

0 x2 −x1 0

 ,

recalling that we had only substituted ~B = (B1, B2, B3) to make further
contact with the physics literature. The Faraday tensor is then

F =
g

r2
(x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx3).

Since F is independent of x0, we have that the equations (2.13) define a 2-
form of this type on any x0 =constant slice of M . Moreover, if we write
(x1, x2, x3) in polar co-ordinates (ρ, θ, φ) we may write

F = g sinφdφ ∧ dθ.

Since F is independent of r, we may assume without loss of generality that
r = 1, and so we may restrict our domain to S2, in, for example, the slice
x0 = 0. We may then define potentialsAN andAS on UN := S2−{0, 0,−1}
and US := S2 − {0, 0, 1}, respectively. On these charts, we have that

AN = g(1− cosφ)dθ

AS = −g(1 + cosφ)dθ,

and it is easy to check that dAN = dAS = F . Now, to describe the transfor-
mation behaviour, note firstly that

AN −AS = 2gdθ,

and we can use this to determine the transition function ψNS : UN ∩ US →
U(1) by comparing it to the transformation behaviour

AN = AS + ψSNdψNS .

We therefore have that

ψNS = e−2gθi.

Since we are on the sphere, we must have 2π periodicity in θ. Namely, we
require that

e−2gθi = e−2g(θ+2π)i =⇒ g =
n

2

for any n ∈ Z. This is Dirac’s quantisation condition. Each value of n will
produce a different transition function, and thus a different principal fibre
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bundle. Because of this, the value of n is call the topological charge. For the
case n = 1 we have the transition function ψNS = e−θi, and this exactly
induces the Hopf bundle, although we refer to, for example, Chapter 2.2 of
[35] for the explicit construction.

2.9 A Word on Notation

The underlying theme in this thesis is finding good gauges, although the con-
text in which we do this varies greatly. In the first two chapters we aim to
find the best representative of a gauge equivalence class, and we denote a
connection by dA := d+A since we are able to work locally and then patch
these results together to form a global result. In the global setting, writing
D := dA = d + A is an abuse of notation, and we mean that in any co-
ordinate neighbourhood Uα we have that D = d + Aα, and if Uα ∩ Uβ 6= ∅,
then there exists a transformation ψαβ : Uα ∩ Uβ → G such that

Aβ = ψβαAαψαβ + ψβαdψαβ

on Uα ∩ Uβ .

This is a quite different setting to Chapter 5 , where we aim to minimise
the Yang–Mills energy by deforming an initial connection along the lines
of steepest descent of the functional. In this case it is not possible to work
locally and then patch the result together. This is because if it could be
possible to deform Aα and Aβ on Uα, Uβ respectively, but it may not be
possible to find a gauge change on Uα∩Uβ , and so it is not possible to patch
these connections together. Due to this, will will adopt the abuse of notation
and write dA when we either work locally, or we are able to work locally
and then patch these local results together. Otherwise, we will denote a
connection D to emphasise that it is a necessarily globally defined object.

2.10 Sobolev Spaces of Maps

Throughout this thesis we will assume the minimal regularity conditions on
the connection forms and gauge changes. As such, we will need to intro-
duce the idea of the Sobolev space of maps. For a review of classical Sobolev
spaces, we refer the reader to, for example, Chapter 5 of [17], or Chapter
7 of [52]. When generalising the notion of a Sobolev space to maps, it is
no longer clear what is meant by a derivative, and so we must fix a covari-
ant derivative with respect to which we will consider the Sobolev space of
maps, which we call∇ref. Firstly, we define the W k,p norm for forms taking
their value in the endomorphism bundle to be:

||A||Wk,p(Ωi(ad E)) :=

( k∑
`=0

||∇`refA||
p
Lp

) 1
p

<∞,

where A is a i-form with measurable co-efficients which takes its values in
ad E. Note that we do not say directly that A ∈ Ωi(ad E), since elements
of Ωi(ad E) are defined to be smooth. This definition is independent of of
the choice of ∇ref. With this notation, we may then say that D ∈ W k,p if
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D = Dref + A, where Dref ∈ Ω1(ad E) and A ∈ W k,p(Ω1(ad E)). The ap-
propriate notion of the Sobolev space of gauge transforms is slightly more
complicated. We must consider gauge transforms as maps between mani-
folds, which means that we must identify G ⊆ SO(n) ⊆ Rn×n via a repre-
sentation. Furthermore, since we may only identify a gauge transform as
S : U → G locally, we are only able to define the Sobolev space of gauge
transforms locally. Formally, to define the Sobolev space of gauge trans-
forms, consider a cover {Uα} of M . We then define

Gk,p(M) := {S : S|Uα ∈W k,p(Uα,Rn×n) and S(x) ∈ G a.e.}. (2.14)

For an in-depth discussion on Sobolev spaces of maps between manifolds
we refer the reader to [5]. For a further discussion on the Sobolev gauge
group specifically, we refer to Chapter 20.1 of [18] or Appendix A of [19].
Since the space of connections is an affine space, we define the Sobolev
space of connections to be the affine space

Ak,p(M) = {dA = d+A : A ∈W k,p(Ω1(ad E))}. (2.15)

Since we will frequently be considering the product of two (or more) el-
ements of Sobolev spaces, the Sobolev multiplication theorems will be of
fundamental importance to our analysis.

Theorem 2.10.1 (Sobolev Multiplication Theorem). Let ki, k and 1 ≤ p ≤
pi <∞ for i = 1, 2 be real numbers satisfying

(i) k1 ≥ k ≥ 0,

(ii) k ∈ N0,

(iii) ki − k ≥ n,

(iv) k1 + k2 − k > 1
n( 1

p1
+ 1

p2
− 1

p) ≥ 0.

The strictness of the inequalities in (iii) and (iv) can be interchanged. Then, the
pointwise multiplication of functions is a continuous bilinear map

W k1,p1 ×W k2,p2 →W k,p.

Amongst other places, a proof of this theorem can be found at [2]. For
p(k + 1) > n, the space Gk+1,p is a smooth (infinite dimensional) manifold
and a (Banach) Lie group. Unfortunately, the proof of this is beyond our
means, and so we refer to Lemma 4.4.3 of [20] and Proposition A.2 of [19]
for a proof. In the same Sobolev range, we have by the Sobolev embedding
theorems that W k+1,p(M,Aut E) ↪→ C0(M,Aut E), see, for example, Theo-
rem B.2 of [57]. This has the important consequence that multiplication and
inversion are continuous maps on Gk+1,p - see, for instance, Lemma A.5
of [57]. Such a condition guarantees the preservation of topology under
gauge transformations. By this, we mean that we will not induce singular-
ities when changing gauge- something which is not guaranteed when we
have p(k + 1) ≤ n. This problem (and its resolution) will in fact occupy us
for the entirety of Chapter 4 for the case when n = 4, p = 2 and k = 1. Fur-
thermore, for the range p(k + 1) > n, the group of gauge transformations
acts smoothly on the space of connections. We prove this in the case where
k = 1, as this is the case of most interest to us.
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Lemma 2.10.2. For 2p > n, the induced map

G2,p ×A1,p → A1,p

(S, d+A) 7→ d+ S−1ds+ S−1As

is smooth. Furthermore, if dA = S−1 ◦ dÃ ◦ S for dA, dÃ ∈ A
1,p, then S ∈ G2,p.

Proof. From the multiplication theorem for Sobolev spaces, Theorem 2.10.1,
we see that the map

W 2,p(M,Aut E)×W 1,p(M,T ∗M ⊗ g)→W 1,p(M,T ∗M ⊗ g)

is continuous for 2p > n, and so the map A 7→ S−1dS + S−1AS is continu-
ous. From the continuity of this map, it follows from the Banach manifold
structure of G2,p that the map is then smooth. Unfortunately, the proof of
this is beyond our means, and so we refer to Theorem 4.4.3 of [20] for a
proof.

Now, suppose that dA = S−1 ◦ dÃ ◦ S, for dA, dÃ ∈ A
1,p, then A =

S−1dS + S−1ÃS, or rather, dS = SA − ÃS. By the Sobolev multiplication
theorems, we know that SA, ÃS ∈ W 1,p, and so we have that dS ∈ W 1,p,
with the estimate ||dS||W 1,p ≤ ||SA||W 1,p + ||ÃS||W 1,p . Therefore S ∈ G2,p.
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Chapter 3

Gauge Construction

3.1 Motivation

Before moving on to the main business of this chapter, we pause briefly
to motivate the problem and review the significance of finding a solution.
As always, let M be a compact, finite dimensional, boundary-free, oriented
Riemannian manifold and E a vector bundle of rank ` over M . Consider
the functional

YMp(A) =

∫
M
|FA|p ∗ (1) =

∫
M
|dA+A ∧A|p ∗ (1) = ||FA||pLp , (3.1)

which we would like to minimise. The Lp norm is sub-additive, so we have
that

||FA||pLp ≤ C
(
||dA||pLp + ||A ∧A||pLp

)
≤ C

(
||dA||pLp + ||A||2p

L2p

)
,

which implies that we require A ∈ W 1,p ∩ L2p a priori. To apply classi-
cal calculus of variations theory we require that the functional be coercive,
which means that YMp(A) controls both the W 1,p and the L2p norms. For
the range 2p ≥ n, however, this situation simplifies significantly, thanks to
the Sobolev embedding theorem.

Lemma 3.1.1. For an n-dimensional base manifold and 2p ≥ n, we have the
following continuous embedding:

W 1,p ↪→ L2p,

with the estimate

||A||L2p ≤ C||A||W 1,p .

Moreover, for 2p > n, this embedding is compact.

Proof. By the Sobolev embedding theorem, we have that

W 1,p ↪→ Lp
∗
,

with the estimate

||A||Lp∗ ≤ C||A||W 1,p ,

where if we demand that p∗ = 2p, we have

1

p∗
≥ 1

p
− 1

n
=⇒ 2p ≥ n.
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For 2p > n, this embedding is compact by the Rellich-Kondrachov com-
pactness theorem.

The above embedding is critical precisely when 2p = n, and although
we will discuss the Yang–Mills functional with exponent p in this chapter,
we note that in the case p = 2, this makes the embedding critical in dimen-
sion four. Due to Lemma 3.1.1, the coercivity condition in the range 2p ≥ n
simplifies to be

||A||W 1,p ≤ C(E)YMp(A),

since if we have control the theW 1,p norm, then we automatically have con-
trol the the L2p norm. As another consequence of the Sobolev embedding
theorem, we see that for 2p > n, we have the compact inclusion

W 2,p ↪→ C0,

although we refer to, for example, [57], Lemma B.3 (iii) for the proof.
This embedding fails for 2p = n, although we still have the embedding
W 2,p ↪→ VMO, the space of vanishing mean oscillations (see [11], example
2 of chapter I.2), although we do not exploit this in this chapter.

Unfortunately, the functional YMp(A) is degenerate since its second
variation is a non-elliptic operator (see, for example, [7] or [6] for an explicit
calculation). The source of this non-ellipticity is the infinite dimensional
group of gauge transformations under which the functional is invariant, its
symmetry group. A discussion on this can be found in [9], chapter I, Sec-
tion (iv), but the main idea is that since any solution is gauge-equivalent to
infinitely many other solutions, the operator YMp(·) has an infinite dimen-
sional kernel, and so cannot be an elliptic operator. Since a variation along
a gauge orbit will produce another solution to the equation, the class of ad-
missable variations must be reduced if there is a hope of applying classical
variational methods to the problem. In view of the Hodge decomposition,
see, for example, Theorem 5.2 of [56], and the discussion in [8], it turns
out that variations of the functional whose tangent vectors (as an element
of Ω1(ad E)) lie in the image of the mapping d∗ : Ω1(ad E) → Ω0(ad E)
are transverse to gauge orbits. In light of this, we replace YMp(A) with the
functional

Ep(A) =

∫
M

(
|FA|p + |d∗A|p

)
∗ (1) ≥ YMp(A).

This approach is common in literature - see, for example, [41], chapter 1.2.
This functional is non degenerate since its second variation is positive def-
inite, see, for example [6]. Heuristically, we can see that this is elliptic be-
cuase gauge equivalent variationts are no longer admissable since we have
broken the gauge symmetry and thus reduced the gauge group. We then aim
to minimise Ep(A), whilst demanding equality to ensure that a minimiser
of Ep(A) is also a minimiser of YMp(A). This approach is common in ge-
ometric analysis, and was first employed to solve Plateau’s problem. For
more on this, see Riviere’s exposition at the start of [44]. It is clear that these
two functionals are equal if and only if d∗A = 0, which is called the Coulomb
gauge condition. By enforcing the Coulomb gauge condition, we are fixing a
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gauge, which means to choose a representative from each gauge orbit. The
Coulomb gauge will be a recurring object in this thesis, and finding good
gauges will often be equivalent to finding a Coulomb gauge.

It is clear then, that the major questions to be answered are:

(i) Does every connection form possess a Coulomb gauge representative?

(ii) When does YMp(A) control ||A||W 1,p?

It is Uhlenbeck’s 1982 paper ‘Connections with Lp Bounds on Curva-
ture’, [53], which gives a definitive answer to both questions for the range
2p ≥ n. It is our intention to give an exposition of her now classical method
for local gauge construction in Section 3.2, and in Section 3.3 we piece these
local theorems together to yield a global result.

3.2 Uhlenbeck’s Local Gauge Construction Method

Here we present the result of Uhlenbeck which stipulates conditions on
the L

n
2 norm of the curvature to gaurantee the existence of a connection

which satisfies the Coulomb condition, and whose W 1,p norm is controlled
by the Lp norm of the curvature in the range 2p ≥ n. Since we are working
locally, we may assume that M = Bn = {x ∈ Rn : |x| ≤ 1} be the base
manifold. Of the space of Sobolev connections as defined in 2.15 we have
ths distinguished subspace

Ak,pκ (Bn) =

{
D ∈ Ak,p :

∫
|x|≤1

|FA|
n
2 ∗ (1) ≤ κ

}
.

We also require that the gauge group has one more degree of differen-
tiability than the connections, i.e., we are working with Gk+1,p(Bn). For
p(k + 1) > n, the group Gk+1,p is a smooth (infinite dimensional) manifold
and a (Banach) Lie group. Unfortunately, the proof of this is beyond our
means, and so we refer to Lemma 4.4.3 of [20]. As previously mentioned,
in this range we have the embedding W k+1,p(M,Aut η) ↪→ C0(M,Aut η),
which has the important consequence that multiplication and inversion are
continuous maps on Gk+1,p - see, for instance, Lemma A.5 of [57]. Such a
condition guarantees the preservation of topology under gauge transfor-
mations. We now state the main theorem of this section.

Theorem 3.2.1. Let n > p > n
2 and assume G ⊆ SO(`) is compact. Then there

exists κ = κ(E) > 0 and C = C(E) such that for every connection D ∈ A1,p
κ

there exists an S ∈ G2,p such that S−1 ◦D ◦ S = d+A and:

(i) d∗A = 0

(ii) ∗A = 0 on Sn−1 = ∂Bn

(iii) ||A||
W 1, n2

≤ C(E)

(∫
|x|≤1

|FA|n/2 ∗ (1)

)2/n

(iv) ||A||W 1,p ≤ C(E)

(∫
|x|≤1

|FA|p ∗ (1)

)1/p

.
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Remark 3.2.2. It is crucial that 2p > n for this lemma, otherwise the the ele-
ments of G2,p(Bn) are not necessarily continuous and G2,p(Bn) does not act
smoothly on A1,p(Bn). It is our intention, however, to extend this theorem
to include the case p = n

2 by using an approximating sequence and limit
argument.

Before we give the proof, we show that inequalities (iii),(iv) of Theorem
3.2.1 are a priori estimates of solutions which satisfy (i),(ii).

Lemma 3.2.3. There exists k(E) > 0 such that if ||A||Ln ≤ k(E) and (i),(ii) of
Theorem 3.2.1 are satisfied for n > p ≥ n

2 , then

||A||W 1,p ≤ C(E)

(∫
|x|≤1

∣∣FA∣∣p ∗ (1)

) 1
p

.

Proof. The system of equations
FA = dA+A ∧A in Bn

d∗A = 0 in Bn

∗A = 0 on Sn−1

is an overdetermined elliptic system with Neumann boundary conditions.
We may use elliptic estimates from Hodge theory, see, for example, Theo-
rem 5.1 of [57] This yields

||A||W 1,p ≤ k′(E)||dA||Lp ,

since A is in Coulomb gauge and the domain is simply connected. From
the equation FA = dA+A ∧A we see that

||dA||Lp ≤ ||F ||Lp + ||A||2L2p

And by noting that 1 = p/q + p/n = 1
q/p + 1

n/p we see from the Hölder
inequality that

||A||2L2p ≤ ||A||Ln ||A||Lq .

We also have the Sobolev inequality

||A||Lq ≤ C||A||W 1,p .

Putting the last four inequalities together, we get

(1− k′(E)C||A||Ln)||A||W 1,p ≤ k′(E)||F ||Lp ,

and the result follows for ||A||Ln ≤ 1
2

1
Ck′(nE) .

Remark 3.2.4. This is the first point where it is important that the curvature
be small. Without this smallness assumption, it wouldn’t necessarily be
true that estimates (iii) & (iv) follow from (i) & (ii), which is one of the main
goals of Uhlenbeck’s gauge construction method.

Proof of Theorem 3.2.1. The proof of this theorem proceeds in three main parts.
Firstly, we will show thatAk,pκ is connected, then that the set of connections
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in Ak,pκ which satisfy (i)− (iv) is both open and closed, and so is all of Ak,pκ ,
since it is non-empty.

Claim 3.2.5. Ak,pκ ⊆ Ak,p is connected for n > p > n
2 .

Proof. Choose an arbitrary D ∈ Ak,pκ such that D = d + A. We then define
the one parameter family Dσ = d + σA(σx). Note that since D0 = d and
Fd = 0, we have d ∈ Ak,pκ . The curvature of FDσ(x) is then given by

FDσ(x) = σ2(dA)(σx) + σ2[A(σx), A(σx)] = σ2FD(σx)

||FDσ(x)||n/2n/2,0 =

∫
|x|≤1

|FDσ(x)|n/2 ∗ (1) =

∫
|x|≤σ

|FD|n/2 ∗ (1) ≤ κ.

So we see for σ ∈ [0, 1] and 2p ≥ n that Dσ ∈ Ak,pκ . We have constructed a
continuous curve inAk,pκ , and since D = d+A was arbitrary, it follows that
Ak,pκ is connected.

Claim 3.2.6. The setD ∈ Ak,pκ such that there exists s ∈ G2,p, where S−1◦D◦S =
d+A and A satisfies (i)-(iv) of the Theorem is closed.

Proof. Let Di = d + Ãi → d + Ã ∈ Ak,pκ be a sequence of connections con-
vergent inAk,pκ such that Di is gauge equivalent to d+Ai, where conditions
(i)− (iv) hold on Ai. Firstly, note that

||FÃi ||Lp ≤ C(||Ãi||W 1,p + ||Ãi||2L2p) ≤ C ′,

where C ′ is a uniform constant, since 2p > n. This follows since Ãi con-
verge to Ã in W 1,p. Then, since Ãi and Ai are gauge equivalent and each Ai
satisfies (i)-(iv), we have

||Ai||W 1,p ≤ C(E)||FAi ||Lp ≤ C(E)C ′.

Therefore the sequence Ai is bounded uniformly in W 1,p, and so by the
Banach-Alaoglu theorem, there exists a weakly convergent subsequence
(also indexed by i) such that Ai ⇀ A ∈W 1,p(Bn, T ∗M ⊗ g). Consider

dSi = SiAi − ÃiSi.

For 1/n− 1/p+ 1/q = 0, since si is orthogonal we get that

||dSi||Lq ≤ ||Ai||Lq + ||Ã||Lq ≤ C(||Ai||W 1,p + ||Ã||W 1,p)

by the Sobolev inequality. Since G is compact, ||Si||W 1,q(Bn,g) is uniformly
bounded, and so there exists a weakly convergent subsequence (also in-
dexed by i) Si ⇀ S in W 1,q(Bn, g). We know that weak limits are preserved
by linear equations, and so we see that

dSi = SiAi − ÃiSi → SA− ÃS = dS.

From Lemma 2.10.2, we have that S ∈ G2,p, and so d+Ã is gauge equivalent
to d+A ∈ Ak,p, and also by the preservation of linear equations under weak
limits we have that this satisfies (i)-(iv) of the theorem. Therefore the space
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inAk,pκ such that d+ Ã is gauge equivalent to d+A, whereA satisfies (i)-(iv)
is closed.

We require the following lemma in preparation for the openness result.
This lemma will allow us to assume that the boundary conditions when we
apply the implicit function theorem are homoegenous, so as to avoid the
need to use boundary value spaces.

Claim 3.2.7. There exists a linear operator P : W 1,p(Bn)→W 2,p(Bn) such that
if f ∈ W 1,p(Bn), P (f) ∈ W 2,p(Bn), P (f)|Sn−1 = 0 and (∗dP (f) + f)|Sn−1 =
0.

Proof. Let P (f) be the solution of a heat equation 0 < r ≤ 1 with zero initial
conditions at r = 1 and inhomogeneous Neumann boundary conditions,
multiplied by a smooth cut-off function φ with φ(0) = 0 and φ(x) = 1 near
|x| = 1. Invert the heat operator with r as time, Sn−1 as space. Then

P (f) = φ[
∂

∂r
−∆Sn−1 ]−1f

P (f)|r=1 = 0

∗dP (f) = −f on Sn−1

StandardLp regularity theory for the heat equation gives P (f) ∈W 2,p(Bn−
{0}) for f ∈W 1,p(Bn − {0}).

We are now in a position where it is possible to use an implicit function
theorem argument. Suppose that we have a connection D ∈ A1,p

κ which is
gauge equivalent to d + A ∈ A1,p, where A satisfies (i)-(iv). Then we want
to show that there is an open set around D in A1,p

κ where each element in
this open set is also gauge equivalent to an element in A1,p which satisfies
(i)-(iv). Namely, we want to show that for all d+ Ã ∈ A1,p

κ , the equation

d∗(S−1dS + S−1ÃS) = d∗A = 0

is solved, where ∗dS|Sn−1 = 0 and ∗λ|Sn−1 = 0 so that ∗A|Sn−1 = 0. This
leads us to the following definitions:

W 1,p
ν =

{
λ ∈W 1,p(Bn, T ∗M ⊗ g) : ∗λ|Sn−1 = 0

}
G2,p
ν =

{
S ∈W 2,p(Bn, G) : ∗dS|Sn−1 = 0

}
.

Claim 3.2.8. For n > p > n
2 , suppose d + A ∈ A1,p such that ||A||Ln ≤ κ(E)

satisfies (i)-(iv). Then there exists ε > 0 such that for ||λ||W 1,p ≤ ε, λ ∈ W 1,p
ν the

non-linear equation

d∗(S−1dS + S−1(A+ λ)S) = 0

has a solution S(λ) ∈ G2,p
ν and the solution depends smoothly on λ ∈ W 1,p

ν and
also satisfies (i)-(iv).
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Proof. Firstly, introduce the following spaces

W 2,p⊥
ν =

{
U ∈W 2,p(Bn, g) :

∫
Bn

U ∗ (1) = 0, ∗dU |Sn−1 = 0

}
Lp⊥ =

{
V ∈ Lp(Bn, g) :

∫
Bn
V ∗ (1) = 0

}
.

The stipulation
∫
Bn

U ∗ (1) = 0 means that if U ≡ const, then u ≡ 0. Then

the operator

(U, λ) 7→ d∗(e−UdeU + e−U (A+ λ)eU )

is a smooth map

W 2,p⊥
ν ×W 1,p

ν → Lp⊥,

where the image of the map lies in Lp⊥ by Stokes’ theorem and the homo-
geneous boundary conditions. To linearise this operator, consider the small
pertubation of U about U, λ = 0. Then

d

dt
(e−U−tψdeU+tψ + e−U−tψ(A+ λ)eU+tψ)|U,λ=0

=(−ψe−U−tψdeU+tψ) + e−U−tψ(d(ψeU+tψ)−
ψe−U−tψ(A+ λ)eU+tψ + e−U−tψ(A+ λ)ψeU+tψ)|U,λ=0

=dψ + [A,ψ].

With this, we have the self-adjoint operator

H : W 1,p
ν → Lp⊥

ψ 7→ d∗(dψ + [A,ψ]) = d∗dψ + [A, dψ].

This is in fact a Banach space isomorphism, and to see this note that the
operator is surjective since this is a homogeneous neumann boundary value
problem, and so a solution is guaranteed to exist for each V ∈ Lp⊥, and
the solution will have regularity W 2,p. For more background on this, see,
for example, Theorem 1.5 of [57]. To see injectivity, note that in a similar
method to the proof of the a-priori estimates, Lemma 3.2.3, for small ||A||Ln
and for the same p, q we have

||H||Lp ≥ ||d∗dA||Lp − ||A||Lp ||dψ||Lq
≥ ||dψ||W 1,p ||(C(E)− k′(E)||A||Lp)
≥ 0.

Therefore we may then apply the implicit function theorem for Banach
spaces, see, for example, Theorem E.1 of [57], and the result follows.

Remark 3.2.9. This claim is the critical step in the proof. By the Sobolev
embedding theorem, we have that for p > n

2 , the map

W 2,p⊥
ν ×W 1,p

ν → Lp⊥.
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is smooth, since W 2,p ↪→ C0, but for p = n
2 , this embedding fails, and so

algebraic manipulation of an element ofW 2,n
2 is not necessarily continuous.

Claim 3.2.10. Suppose D ∈ A1,p
κ for n > p > n

2 is gauge equivalent to d + A,
where A satisfies (i)-(iv) of the theorem. Then, if κ is sufficiently small, there exists
an open neighbourhood of D ∈ A1,p

κ such that every D in this neighbourhood is
gauge equivalent to a connection satisfying (i)-(iv).

Proof. We would like to apply the result of Claim 3.2.8, but we cannot as-
sume that ∗λ = 0, so we Let U = U(λ) = P (∗λ) where P is the linear
operator constructed in Claim 3.2.7. Make the gauge transformation

e−U (d+A+ λ)eU = d+ e−UdeU + e−UAeU + e−UλeU = d+A+ λ̃

where λ̃ = e−UAeU−A+e−UdeU +e−UλeU and ||U ||W 2,p ≤ c̃||∗λ||W 1,p from
Claim 3.2.7. It is then possible to make ||λ̃||W 1,p arbitrarily small by making
||λ||W 1,p sufficiently small so that ||λ̃|| < ε as in Claim 3.2.8. Since U = 0 on
Sn−1, deU |U=0 = eUdU |U=0 = dU on Sn−1 and ∗λ̃|Sn−1 = (∗dU +∗λ)|Sn−1 =
0. We may now apply Claim 3.2.8 to d+A+ λ̃, and this establishes an open
neighbourhood about d + A. We may then pull back this neighbourhood
by the gauge transform taking D to d + A and intersect it with A1,p

κ , thus
giving the open neighbourhood about D.

Remark 3.2.11. Unfortunately, we are not able to apply the implicit func-
tion theorem directly to the connection D in A1,p

κ . This is because it was
necessary that the solution S(λ) be close to the identity so that writing
S = exp(U + tψ) makes sense and there is no guarantee that the transform
from D to d + A is close to the identity. This is only a slight complication,
however, since the gauge group acts continuously on A1,p

κ for 2p > n. This
guarantees that the pullback of an open neighbourhood inA1,p about d+A
corresponds to an open neighbourhood about D ∈ A1,p

κ .

This concludes the proof, since for ε small enough we have proven that
the space of connections inA1,p

κ which are gauge equivalent to a connection
in A1,p which satisfies (i)-(iv) of the theorem is connected, open, closed and
non-empty. Therefore, it must be the whole space, and every connection
D ∈ A1,p

κ is gauge equivalent to a connection in A1,p which satisfies (i)-
(iv).

Remark 3.2.12. As noted in Claim 3.2.10, it is not necessary that the λ sat-
isfy homogeneous Neumann boundary conditions, which is the motivation
for Claim 3.2.7. A method of proof where homogeneous Neumann bound-
ary conditions are not assumed in Claim 3.2.8 is possible, although such a
method requires the use of boundary value spaces. This makes Claim 3.2.7
redundant, and Claims 3.2.8 and 3.2.10 can be condensed into one proof.
This is the method adopted by [57] and [44] in their expositions of Uhlen-
beck’s method of local gauge construction.

As previously stated, we are able to extend the result of Theorem 3.2.1
to include the case 2p = n by using a limit argument.
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Corollary 3.2.13. Suppose d+ Ã ∈ A1,n
2 and FÃ = dÃ+ Ã ∧ Ã satisfies∫

|x|≤1
|FÃ|

n
2 ∗ (1) ≤ κ(E).

Then there exists S ∈ G2,n
2 such that A = S−1dS + S−1ÃS satisfies (i)-(iv) of

Theorem 3.2.1.

Proof. As in Evans, [17], chapter 5, we may approximate Ã by smooth func-

tions such that Ãi → A ∈W 2,n
2 (Bn, T ∗M⊗g) with each

∫
|x|≤1

|FÃi |
n
2 ∗(1) <

κ(E). Since each Ãi is smooth, we have that Theorem 3.2.1 applies, and so
each is gauge equivalent to an Ai which satisfies (i)-(iv) of Theorem 3.2.1.

Since Claim 3.2.6 holds for p = n
2 , we know that the space A2,n

2
κ is closed,

and so the limit of this sequence also lies inA2,n
2

κ , and the result follows.

3.3 Weak Uhlenbeck Compactness

In the previous section we constructed only local gauges over balls whose
L
n
2 norm of curvature is small enough, and in this section we follow Uh-

lenbeck’s method to piece them together to give a global gauge. To do this,
we suppose that M has an open cover {Uα}α∈I where each Ui is a ball on
which the L

n
2 norm of curvature is sufficiently small. We then work with

the local trivialisations of the gauges in each of these elements given by
Theorem 3.2.1 in the hope that we will be able to construct global gauge
transformations. Before we get to proving the main theorems, we give a few
preliminary lemmas. In the following, ϕ, φ are overlap functions, and these
represent the same bundle if there exists a subcover Vα ⊆ Uα, M ⊆

⋃
α Vα

and ρα : Uα → G such that φαβ = ραϕαβρ
−1
β . For the following lemma,

exp : g→ G is the usual exponential map and we fix a neighbourhood G̃ of
the identity in G in the domain of exp−1.

Lemma 3.3.1. Let G be a compact group with an equivariant metric. Then there
exists f0 > 0 such that if f, g, ρ ∈ G, | exp−1 hg| ≤ f0 and | exp−1 ρ| < f0, then
ϕρφ ∈ G̃ and

| exp−1 ϕρφ| ≤ 2(| exp−1 ϕφ|+ | exp−1 ρ|)

Proof. The map Q given by the formula

exp(Q(k, u)) = exp k expu

is defined and smooth for (k, u) in a neighbourhood of 0 ∈ g. We have
Q(0, 0) = 0 and |dQ(0, 0)| = 1 (assuming that k′(0) = u′(0) = 0), since
d
dt exp(0,0)(Q(k(t), u)) = k′(t) exp k(t) expu|t=0,u=0 = 0 and
d
dt exp(0,0)(Q(k, u(t))) = u′(t) expu(t) exp k|t=0,k=0 = 0. Choose O = {x ∈
g : |x| ≤ f0} such that |dQ(k, u)| ≤ 2 for k, u ∈ O. Since O is convex, by
the mean value theorem |Q(k, u)| ≤ 2(|k|+ |u|) for |k|, |u| ≤ f0. The lemma
follows if we set k = exp−1(hg) and u = g−1 exp−1(ρ)g = Adg−1 (exp−1 ρ).
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Note that

expu = exp
(
g−1 exp−1(ρ)g

)
=
∞∑
k=0

1

k!
(g−1 exp−1(ρ)g)k

=
∞∑
k=0

1

k!
g−1(exp−1(ρ))kg

= g−1 exp
(
exp−1 ρ

)
g = g−1ρg

With this in mind, we see that

Q(k, u) = exp−1(hg exp
(
Adg−1(exp−1 ρ)

)
) = exp−1(hρg)

|Q(k, u)| ≤ 2(| exp−1(hg)|+ |Adg−1(exp−1 ρ)|) = 2(| exp−1 hg|+ | exp−1 ρ|),

since Adg−1 is an isometry. From this, we see the result.

Since M is compact, for every cover there exists a finite subcover, so fix
an open cover {Uα} where α ∈ I = {1, 2, ..., `}. The following proposition
will be used to conclude topological information about the bundle structure
we are going to construct our gauges on.

Proposition 3.3.2. Let φαβ : Uα ∩Uβ → G and ϕαβ : Uα ∩Uβ → G be two sets
of continuous transition functions describing vector bundles over M . Then there
exists f` such that if

m = max
(α,β)

x∈Uα∩Uβ

| exp−1
(
φαβ(x)ϕβα(x)

)
| ≤ f`, (3.2)

then the following holds:
There exists a smaller cover Vα ⊆ Uα, M ⊆

⋃
α Vα and continuous ρα : Vα →

G such that φαβ = ραϕαβρ
−1
β on Vα ∩ Vβ . Morever, max

x∈Vα
| exp−1 ρα| ≤ c`m.

Proof. This proof is inductive on the number of elements in the cover. For
the base step, let ` = 1. Then Vα = Uα and we see immediately that this case
is trivial, since ρ1 = 1 ∈ G. For the inductive hypothesis, suppose that we
have constructed a cover {Uα,k} such that Uα,k ⊂ Uα and ρα : Uα,k → G sat-
isfying φαβ = ραϕαβρ

−1
β onUα,k∩Uβ,k for 1 ≤ α ≤ k and 1 ≤ β ≤ k. Further-

more, assume that M ⊂

( ⋃
α≤k

Uα,k

)⋃( ⋃
α>k

Uα

)
and | exp−1 ρα| ≤ ckm.

We now claim that ifm is sufficiently small, then we may continue this con-
struction from j = k to j = k + 1, which will complete the inductive step
and thus complete the proof.

For j = k + 1, we define uj = exp−1(φjβραϕαj) which defines a con-
tinuous map uj : Uα,k ∩ Uj → g for α ≤ k = j − 1. If m ≤ f0

ck
, we have

| exp−1 ρα(x)| ≤ ckm ≤ f0 by the inductive hypothesis and | exp−1(φjαϕαj)| ≤
m ≤ f0 by assumption. The previous lemma then shows that uj exists and
satisfies the inequality

|uj(x)| ≤ 2(1 + ck)m = cjm.
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To see that uj is consistently defined, on Uj ∩

( ⋃
α≤k

Uα,k

)
we have by the

consistency conditions of transition functions on a vector bundle that

uj = exp−1(φαβραϕαβ)

= exp−1(φjγφγαραϕαγϕγj)

= exp−1(φjαργϕγj),

and so uj is consistently defined.
Now choose a cutoff function ξj such that ξj = 0 on Uj −

⋃
α≤k

Uα,k. This

can be done in such a way such that the sets

Uα,j = Uα,k ∩ interior{x : ξj(x) = 1}

cover M −
⋃
α>k

Uα. If we then define ρj = exp(ξjuj) on Uj ∩

( ⋃
α≤k

Uα,k

)
.

Therefore ρj = 1 on Uj −
⋃
α≤k

Uα,k and | exp−1 ρj(x)| ≤ |ξj(x)uj(x)| ≤ 2(1 +

ck)m = cjm. We see that the continuous map ρj and the sets Uα,j have the
required properties for j = k + 1, which completes the proof.

Remark 3.3.3. The condition (3.2) is subtle, although necessy for our cutoff
function argument to make sense. By definition, ρj = 1 on Uj −

⋃
α≤k

Uα,k,

and so ρj(x) must lie in the same co-ordinate patch as the identity for ev-
ery x ∈ M , and it wouldn’t necessarily if φjβραϕαj /∈ G̃. The bound
exp−1 |φjβϕαj | ≤ f` for a suitable f` ensures this.

Remark 3.3.4. Since a bundle can be reconstructed from its transition func-
tions, the importance of Proposition 3.3.2 will become clear when we con-
struct sequences of transition functions in Lemma 3.3.7. Since each of these
transition functions is different, although the covering of M is unchanged,
it is our intenetion to be able to apply Proposition 3.3.2 to show that all the
transition functions in the sequence do in fact describe E.

Corollary 3.3.5. Let φαβ and ϕαβ be two sets of W 2,p transition functions on
Uα ∩ Uβ for 2p > dimM , φαβ ∈W 2,p(Uα ∩ Uβ, G), ϕαβ ∈W 2,p(Uα ∩ Uβ, G).
Suppose

m = max
(α,β)

x∈Uα∩Uβ

| exp−1 φαβ(x)ϕαβ(x)| ≤ f`.

Then the ρα constructed in the previous proposition satisfy ρα ∈ W 2,p(Vα, G).
Furthermore, if ||φαβ|Uα∩Uβ ||W 2,p ≤ m′ and ||ϕαβ|Uα∩Uβ ||W 2,p ≤ m′, then

|| exp−1 ρα|Vα ||W 2,p ≤ k(m′).

Proof. For the range 2p > dimM , we see by the Sobolev multiplication,
Lemma B.3 [57], that if f, g ∈ W 2,p, then fg ∈ W 2,p. We show the first part
of the claim by induction. For k = 1, we see that ρ1 = 1 ∈ W 2,p(Vα, G).
Assume now that ρα ∈ W 2,p for α ≤ k, as in Proposition 3.3.2, then since
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2p > dimM , we have that φjβραϕαj ∈ W 2,p, and since exp−1 is smooth
away from 0, uj ∈ W 2,p. The cutoff function and exp are both smooth, so
we have that ρj ∈ W 2,p, as claimed. The second claim follows immediate
from the fact that ξjuj ∈W 2,p.

We are now in a position to prove the main theorem of this section.

Firstly, fix a p > n
2 and assume that

∫
M
|F |p ∗ (1) ≤ B. The next Lemma

proves the existence of a cover of M such that on each element of the cover
the curvature of the connection is small enough for the local theorems to
apply.

Lemma 3.3.6. There exists a finite cover {Uα}α∈I , |I| < ∞ of M depending on
p, where 2p > n and B such that Bn ' Uα for each α ∈ I . Under this co-ordinate
identification we have ∫

|x|≤Bn
|FA|p ∗ (1) ≤ κ′(E).

Proof. Choose a ball about each point x ∈M such that the curvature in this

ball is restricted to
∫
Bn
|F |p ∗ (1) ≤ κ′(n). By the same construction and

dilation as in Claim 3.2.5 in the proof of Theorem 3.2.1, we may assume

that every x ∈M lies in a ball such that
∫
|x|≤Bn

|F |p ∗ (1) ≤ κ′(E). Since M

is compact, there exists a finite subcover of these patches which cover M .
This choice of subcover is independent of D, but depends on B, κ′ and the
fact that 2p > n.

We can now combine the local theorem Theorem 3.2.1 with Proposition
3.3.2 and Lemma 3.3.6 to get the existence of a globally defined gauge which
satisfies the Coulomb gauge condition when written in local co-ordinates.
Firstly, set κ′ ≤ κ, where κ is that of Theorem 3.2.1 and then apply Theorem
3.2.1 to each of the elements Uα of the cover of M as constructed in Lemma
3.3.6. Recall now that choosing a gauge on a principal bundle is equivalent
to choosing a trivialisation of the bundle (Lemma 2.2.8), and that a triviali-
sation of the principal bundle induces trivialisations of an associated vector
bundle. As we showed in Chapter 2, choosing a gauge on our vector bun-
dle is equivalent to choosing a gauge on its frame bundle, which in turn
determines a trivialisation of the frame bundle and induces a trivialisation
on the vector bundle. Such interplay is an excellent example of how the
properties of the frame bundle as a principal bundle will be implicitly used
without making mention of it. We have then that by choosing a gauge we
have chosen a trivialisation ψα : π−1(Uα) → Uα × R`. In the following
Lemma we bring together ideas which have been used already on individ-
ual connections (and overlap functions) and apply them to sequences.

Lemma 3.3.7. Let D(i) be a sequence of connections in A1,p and assume that∫
M
|FD(i)|p ∗ (1) ≤ B for each i. Then there exists a fixed open cover Uα of M and

trivialisations ψα(i) : π−1(Uα) → Uα × R` which induces the connection forms
ψα(i)(D(i)|Uα)ψ−1

α (i) = d+A(i, α). These trivialisations satisfy the properties

(i) Conditions (i)− (iv) of 3.2.1 are satisfied by the A = A(i, α) on Uα.
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(ii) The overlap functions ϕαβ(i) = ψα(i) ◦ ψ−1
β (i) are uniformly bounded in

W 2,p(Uα ∩ Uβ, G).

(iii) For a subsequence, we have weak convergence

A(i′, α) ⇀ A(α) in W 1,p(Uα, T
∗M ⊗ g)

ϕαβ(i′) ⇀ ϕαβ(∞) in W 2,p(Uα ∩ Uβ, G).

(iv) The A(α) represent a connection D = d + A on E presented in terms of a
trivialisation of E whose overlap functions are given by ϕαβ(∞).

Proof. Construct the cover ofM as in Lemma 3.3.6 and note that by Rellich’s
lemma that Lp ↪→ L

n
2 is a compact embedding for p > n

2 , so
||F ||Lp(Uα) ≤ κ′ =⇒ ||F ||

L
n
2 (Uα)

≤ Cκ′, and so the hypothesis of Theorem
3.2.1 are satisfied by each element of the cover for κ′ small enough. We may
then apply 3.2.1 to the connections to see that condition (i) is true.

Since, on Uα ∩ Uβ , we have Aα = ϕαβdϕβα + ϕαβAβϕβα, we deduce
that ϕαβ ∈ W 2,p(Uα ∩ Uβ, G) in exactly the same was as we deduce that
s ∈W 2,p(Bn, G) in Lemma 2.10.2.

Since the Sobolev spaces W 1,p(Uα, T
∗M ⊗ g) and W 2,p(Uα ∩ Uβ, G) are

reflexive, a consequence of the Banach Alaoglu theorem states that any
bounded sequence in these spaces has a weakly convergent subsequence,
and (iii) follows.

The consistency conditions are preserved under weak limits, and so it is
clear that A(α) is a connection on a bundle presented in terms of ϕαβ(∞).
Although sequences of transition functions can coverge weakly so that the
limit is over a different bundle. Note, however, that if we take ϕ(∞) = ϕ,
and ϕ(i) = φ, where ϕ(i) is any term in the sequence, then thanks to the
uniform bounding of the transition functions, we can see that these satisfy
the hypothesis of Proposition 3.3.2, and therefore these transition functions
describe the same bundle, namely, E.

We are now in a position to prove the main theorem.

Theorem 3.3.8 (Weak Uhlenbeck Compactness). Let 2p > dimM andD(i) be

a sequence of connections inA1,p such that
∫
M
|FD(i)|p∗1 ≤ B. Then there exists a

subsequence {i′} ⊂ {i} and gauge transformations S(i) ∈ G2,p = W 2,p(M,AutE)
such that

S(i′)−1 ◦D(i′) ◦ S(i′) ⇀ D in A1,p

Proof. Assume that the situation as described in 3.3.7 has been constructed
and relabel i′ = i. By the Sobolev embedding theorem for 2p > nwe get that
W 2,p(M) ↪→ C0(M) is a compact embedding, so ϕαβ(i)→ ϕαβ(∞) strongly
in C0(Uα ∩ Uβ, G). Therefore there exists a fixed j, such that for i < j ≤ ∞
we may apply Proposition 3.3.2 and Corollary 3.3.5 to ϕαβ(i) = φαβ and
ϕαβ(j) = ϕαβ .
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There exists a cover of M by the open sets Vα ⊂ Uα such that for j < i ≤ ∞,
ρα(i) ∈W 2,p(Vα, G) and

ϕαβ(i) = ρα(i)ϕαβ(j)ρ−1
β (i)

Moreover, by construction, ρα ∈ W 2,p(Vα, G) is bounded uniformly. There-
fore, by the Banach-Alaoglu theorem there exists a subsequence which con-
verges weakly to ρα(∞). Again, by the compact embedding of W 2,p ↪→ C0

for the range 2p > n we also have the strong covergence ρα(i)→ ρα(∞).

Define the global gauge transformation S(i) ∈ G2,p onUα by the formula

S(i) = ψ−1
α (i)ρα(i)ψα(j) (3.3)

On Uα ∩ Uβ , the consistency condition

ψα(i)ρα(i)ψ−1
α (j) = ψβ(i)ρβ(i)ψ−1

β (j)

can be rearranged to give

ρα(i)ψα(j)ψβ(j)−1ρβ(i)−1 = ψα(i)ψ−1
β (i)

From the definition of the overlap functions, we see that

ρα(i)ϕαβ(j)ρβ(i)−1 = ϕαβ(i)

To show that S(i)−1 ◦ D(i) ◦ S(i) is weakly convergent, fix a trivialisation
ψα(j) : π−1(Vα) → Vα × R`. This trivialisation does lie in W 2,p since the
transition functions do, although since A1,p is an affine space, there is no
natural choice of norm. It suffices to show that the induced connection
forms in this trivialisation over Vα converge weakly in W 2,p(Vα, T

∗M ⊗ g).
From (3.3), we see that

ψα(j)s(i)−1 ◦D(i) ◦ s(i)ψ−1
α (j) = ρ−1

α (i)ψα(i) ◦D(i) ◦ ψ−1
α (i)ρα(i)

Recall that the trivialisations ψα(i) were chosen such that ψα(i) ◦ D(i) ◦
ψ−1
α (i) = d+A(α, i) satisfies (iii) of Lemma 3.3.7. Therefore, S(i)−1 ◦D(i) ◦
S(i) is now

ρ−1
α (i) ◦ (d+A(α, i)) ◦ ρα(i) = d+ ρ−1

α dρα(i) + ρ−1
α (i)A(α, i)ρα(i)

Because A(α, i) is weakly convergent in W 1,p(Vα, T
∗M ⊗ g) and ρα(i) in

W 2,p(Vα, G) by Corollary 3.3.5, this connection converges weakly inW 1,p(Vα, T
∗M⊗

g).

In Yang–Mills theory, one often wants to study the moduli space of con-
nections, M = A/G. The compactness result proven in Theorem 3.3.8 as-
serts that every subset of A1,p(E)/G2,p(E) which satisfies an Lp bound on
curvature is weakly compact, and this result has been fundamental in the
developments of geometry and topology in the past 30 years. Unfortu-
nately, any further discussion of the moduli space of connections would
lead us too far astray, and so we refer to [15] for analysis of the moduli
space and its significance.
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Chapter 4

Removable Singularities in
Yang–Mills Fields

4.1 Motivation

In this chapter, we specialise our attention to n = 4, which is both the di-
mension of most physical interest, and also the critical dimension for the
Yang–Mills functional. As before, letE be a vector bundle of rank n overM ,
a smooth, orientable, compact and boundary-free Riemannian Manifold.
As we know, the Yang–Mills functional is invariant under gauge transfor-
mations, and it is this invariance that is the main problem when one con-
siders the regularity theory. For example, suppose that A ∈ Ω1(ad E) is
a Yang–Mills connection form so that FA is a smooth Yang–Mills field. If
S ∈ G is an element of the gauge group which is not necessarily smooth, then
Ã = S−1dS + S−1AS is also a Yang–Mills connection, and FÃ is a Yang–
Mills field; however, there is no reason for Ã or FÃ to be smooth, or even
continuous, and such a transformation might even introduce apparent point
singularities. In her paper ‘Removable Singularities in Yang–Mills Fields’,
[54], Uhlenbeck prescribes conditions under which it is possible to identify
when there is one of these ‘removable singularities’, and then provides a
method for removing it. Much of her argument is still valid for dimensions
not equal to 4, but there are several crucial theorems which hinge on the
dimension. It is Tao and Tian’s paper, [50], which gives a description of
removable singularities in higher dimensions, although we only consider
Uhlenbeck’s paper in this chapter.

It should first be reiterated that it is very much possible to have singu-
larities in Yang–Mills fields, and it will not always be possible to remove
them. For example, let D be a Yang–Mills connection in a vector bundle
E over Sn−1 and let f : Bn − {0} → Sn−1 be given by f(x) =

x

|x|
. The

pullback connection f∗D is then a Yang–Mills connection on the pullback

bundle f∗E over Bn and the curvature grows exactly like
1

|x|2
. It is known

that there exist non trivial Yang–Mills fields over S2, S3, S4 (e.g. in the Hopf
bundle), and this gives us some examples of isolated singularities in dimen-

sions 3,4 and 5. Moreover, since the curvature grows exactly like
1

|x|2
the

integral
∫
Bn
|f∗(F )|q ∗ (1) is finite for q < n

2 , but infinite for q ≥ n
2 be-

cause the Jacobian in spherical co-ordinates will dominate the singularity
for q < n

2 , otherwise the singularity dominates and the integral blows up.



56 Chapter 4. Removable Singularities in Yang–Mills Fields

This fact will be important in the identification of removable singularities
as opposed to inherent singularities.

4.2 Canonical Choice of Gauge

Before we get to removing singularities we must first introduce some no-
tation. In this section we follow Uhlenbeck’s construction of the canonical
choice of gauge over three particular regions of interest. Namely, we con-
struct controlled gauges in a domain U , whereD = d+A andA satisfies the
Coulomb condition, d∗A = 0, when ||F ||L∞ is small enough. The three re-
gions of interest for us will be the unit sphere, the unit ball and the annulus,
i.e.

U = Bn = {x ∈ Rn : |x| ≤ 1},
U = Sn−1 = {x ∈ Rn : |x| = 1},
U = A = {x ∈ Rn : 1 ≤ x ≤ 2}.

There are many methods to choose a local gauge; however, the most in-
tuitive is to fix a fibre over x0 and identify nearby fibres by setting (x(t) ·
A(x(t)) = 0 along all geodesics x(t) emanating from x0. By doing this, we
almost fix a gauge in all balls within the cut locus of M , in that the gauge
is fixed up to a gauge change by a constant element of G, but more will
be said on this later. In a Euclidean ball, this corresponds to A(0) = 0 and
Ar = 0. In the physics literature, this is known as the Poincaré, or multipo-
lar gauge condition, but we refer to it by its original mathematical name as
an exponential gauge.

To simplify our notation, we use the coordinate change x = (xi)
n
i=1
∼=

(r, ψ) = (|x|, xi|x|) for ψ =
x

|x|
∈ Sn−1 as a transformation from Euclidean

to spherical coordinates. The 1-form A = (Ai) ∼= (Ar, Aψ) splits into ra-
dial and spherical parts. The two form F = (Fij) ∼= (Frψ, Fψψ) splits
into two parts also. Note that Frr = 0 because of anti-symmetry. Here
Fψψ is a two-form along Sn−1. In the sphere Sn−1, we often change co-
ordinates to ψ ∼= (ϕ, θ), i.e. from spherical to polar coordinates. Here
ϕ ∈ (0, π) and θ ∈ Sn−2. Therefore, on Sn−1, A = (Aψ) ∼= (Aϕ, Aθ) and
FA = (Fϕϕ) ∼= (Fϕθ, Fθθ) (Fϕϕ = 0 by antisymmetry). Furthermore, al-
though the local identification D = d+A =: dA is only valid on co-ordinate
patches, as noted in Section 2.9, by an abuse of notation we will swap be-
tween writing dA and D to mean a connection, since we are assuming that
in every co-ordinate patch this identification is valid. We will adopt a sim-
ilar approach for the curvature, and by a further abuse of notation swap
between FA and F . When writing the curvature in local co-ordinates, the
reference to the connection form A will be surpressed if it is understood
what the connection form is, and we will simply write Fij . Similarly, if the
emphasis is on the co-ordinate system, then we will write F (x), F (y) etc
without reference to the connection form in order to emphasise the local
co-ordinates.
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Lemma 4.2.1. In an exponential gauge in Rn,

|A(x)| ≤ 1

2
|x| max
|y|≤|x|

|F (y)|. (4.1)

Proof. To start, assume that a gauge is given in which dÃ = d + Ã. Then
we would like to find a gauge transformation such that Ar(x) = S−1 ∂S

∂r +

S−1ÃrS = 0. Therefore, we require ∂S
∂r = −ÃrS. If S(x) = σ(|x|, x|x|), then

we see that this is equivalent to the ODE with ψ fixed

d

dt
σ(t, ψ) = −Ãr(t, ψ)σ(t, ψ)

with the initial condition σ(0, ψ) = 1 ∈ G ⊂ SO(`). If Ã is smooth, then
S(x) = σ(|x|, x|x|), S

−1 ∂S
∂r ∈ C1(Bn, G). By construction, if dA = d + A,

where A = S−1dS + S−1ÃS, then
n∑
k=1

xkAk(x) = Ar(x) = 0, which is a

Neumann-type condition. Note that although S(x) ∈ C1(Bn, G), it is not
necessary that A is as smooth as Ã, or that FA = S−1FÃS, although both
exist. We compute∑

k

xkFkj =
∑
k

(
xk
∂Aj
∂xk

− xk ∂Ak
∂xj

+ xk[Ak, Aj ]
)
,

and since
∑

k x
kAk(x) = 0,

∂

∂xj

∑
k

xkAk = Aj +
∑
k

xk
∂Ak
∂xj

= 0,

together with ∂
∂r =

∑
k
xk

r
∂
∂xk

, we find that

∑
k

xkFkj = r
∂Aj
∂r

+Aj

=
∂

∂r
(rAj).

Note that xk[Aj , Ak] = 0 by the Jacobi identity and the fact that
∑

k x
kAk(x) =

0. We then integrate both sides to get∫ |x|
0

∂

∂r
(rAj(x))dr = |x|Aj(x) =

∫ |x|
0

∑
k

xkFkj(x)dr

= max
|y|≤|x|

|F (y)|
∫ |x|

0

∣∣∣∣∑
k

xkdr

∣∣∣∣
≤ max
|y|≤|x|

|F (y)|
∫ |x|

0
|x|dr

=
|x|2

2
max
|y|≤|x|

|F (y)|

And so |Aj(x)| ≤ 1

2
|x| max
|y|≤|x|

|F (y)|, as advertised.
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The construction of an exponential gauge in the sphere is analogous;
however, the estimates are slightly different due to the underlying curva-
ture.

Lemma 4.2.2. In an exponential gauge on the sphere Sn−1,

||A(ϕ, θ)|| ≤ 1− cosϕ

sinϕ
||FA||∞

away from the cut locus.

Proof. Assume that we have constructed a gauge as in the previous lemma
such that the radial component is 0. In this gauge, the ‘radial’ component is
ϕ, so Aϕ(ϕ, θ) = 0. Therefore, by the definition of curvature, we have

Fϕθ =
∂Aθ
∂ϕ
− ∂Aϕ

∂θ
+ [Aϕ, Aθ] =

∂Aθ
∂ϕ

=⇒ |Aθ(ϕ, θ)| =
∣∣∣ ∫ ϕ

0
Fϕθ(τ, θ)dτ

∣∣∣.
Since we are on the sphere, the metric is no longer flat, and so the norm is
not just the absolute value anymore, but rather

||Aθ(ϕ, θ)|| = (sinϕ)−1|Aθ(ϕ, θ)|

= (sinϕ)−1
∣∣∣ ∫ ϕ

0
Fϕθ(τ, θ)

sin τ

sin τ
dτ
∣∣∣

≤
∫ ϕ

0 sin τdτ

sinϕ
max
φ∈[0,π)

∣∣Fφθ(φ, θ) 1

sinφ

∣∣
=

1− cosϕ

sinϕ
max
φ∈[0,π)

∣∣Fφθ(φ, θ) 1

sinφ

∣∣.
Therefore, by the identity

1− cosϕ

sinϕ
= tan

ϕ

2
, we have the estimate

||Aθ(ϕ, θ)|| ≤ tan
ϕ

2
||FA||L∞ .

At the cut locus from ϕ = 0, as ϕ → π, the estimate blows up and the
exponential gauge becomes singular.

Lastly, suppose we have a gauge which has been given on E|Sn−1 '
Sn−1 × R`. Then we may extend it to a collar neighbourhood with Ar = 0.
Analogously to Lemma 4.2.1, we have∫ 1

1
|x|

∂

∂r
(rAj(x))dr =

(
1− 1

|x|

)
Aj(x) =

∫ 1

1
|x|

∑
k

xkFkj(x)dr.

Note that this fixes the gauge on the boundary. From this, we get the esti-
mate

|A(x)| ≤ 1

|x|

∣∣∣∣Aψ( x

|x|

)∣∣∣∣+

(
|x|+ 1

|x|

)
max
|y|≤|x|≤1

|F (y)|. (4.2)

In the next three lemmas, we match these constructed gauges on overlap-
ping regions such that a gauge can be defined over the whole region. The
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argument for each construction is very similar; however, due to the bound-
ary conditions, we state them separately.

Lemma 4.2.3. There exists α0 > 0 and κ <∞ depending on G, such that if D is
a connection in a bundle over Sn−1 in which

max
ψ∈Sn−1

|FA| = ||FA||L∞ < α0

then there exists a connection dÃ = d+ Ã such that ||A||L∞ ≤ κ||FA||L∞ .

Proof. By Lemma 4.2.3, there exists an exponential gauge off the north pole
(ϕ = 0) such that dA0 = d+A0, and an exponential gauge off the south pole
(ϕ = π) such that dAπ = d + Aπ, and that these gauges match in regions
where they are both defined. From Lemma 4.2.3, we have

||A0(ϕ, θ)|| = cscϕ|A0(ϕ, θ)| ≤ ϕ

2
||FA||L∞

||Aπ(ϕ, θ)|| = cscϕ|Aπ(ϕ, θ)| ≤ π − ϕ
2
||FA||L∞

In the region about ϕ = π
2 we have d + A0 = d + Aπ, and so we have

d + Aπ − A0 = d, and so there exists a gauge transform such that Aπ −
A0 = S−1dS. Since these are exponential gauges, we have Aπϕ = A0

ϕ = 0,
and so ∂S

∂ϕ = 0. Therefore S(ϕ, θ) is independent of ϕ and we let S̃(θ) =
s(ϕ, θ) for notational convenience. Moreover, by hypothesis and since s is
independent of ϕ, we have

|dS̃(θ)| = |dS(
ϕ

2
, θ)| = |A0

θ(
ϕ

2
, θ)−Aπθ (

ϕ

2
, θ)| ≤ 2||FA||L∞ ≤ 2α0,

where α0 is half of the injectivity radius of the Lie group, G. Then we may
define S̃ using the exponential map, such that

S̃(θ) = S0 exp(u(θ)),

where u : Sn−2 → g. If we assume that
∫
Sn−1

u = 0 so that u ≡ C =⇒ u ≡

0, then we have that

||du||L∞ ≤ C(G)||dS̃||L∞ ≤ 2C(G)||FA||L∞ ,

where C(G) depends only on the Lie group, or, more specifically, its injec-
tivity radius. Then, we define a new gauge by multiplying the exponential
gauge from the north pole by h : Sn−1 − {0, θ} → G

h(ϕ, θ) = S0 exp
(

sin2
(ϕ

2

)
u(θ)

)
.

By construction, this is exactly the same gauge defined by changing the
exponential gauge from the south by q : Sn−1 \ {π, θ} → G given by

q(ϕ, θ) = S0 exp
(
− cos2

(ϕ
2

)
y(θ)

)
.
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This new gauge is then globally defined on Sn−1, where

A =

{
h−1A0h+ h−1dh for 0 ≤ ϕ ≤ π

2 ,

q−1Aπq + q−1dq for π
2 ≤ ϕ ≤ π.

We can see that this is continously defined, since for ϕ = π
2 , we have

h−1A0h+ h−1dh = q−1Aπq + q−1dq. Since A0
ϕ = Aπϕ = 0, we have that

|Aϕ(ϕ, θ)| =

{
|h−1 ∂

∂ϕh| for 0 ≤ ϕ ≤ π
2

|q−1 ∂
∂ϕq| for 0 ≤ ϕ ≤ π

2

= | sin ϕ
2

cos
ϕ

2
u(θ)|

≤ 1

2
κ||FA||L∞ .

Since ||Aθ(ϕ, θ)|| = cscϕ|Aθ(ϕ, θ)|, we have

cscϕ|Aθ(ϕ, θ)| ≤

{
csc
(
|A0(ϕ, θ)|+ | ∂∂θh|

)
for 0 ≤ ϕ ≤ π

2

csc
(
|Aπ(ϕ, θ)|+ | ∂∂θq|

)
for π

2 ≤ ϕ ≤ π

≤ 1

2
κ cscϕ||FA||L∞ .

Therefore

||A||L∞ ≤ κ||FA||L∞ ,

as claimed.

It is in the next two proofs where it will be noticable that we have only
fixed a gauge up to a constant gauge transformation, although it will not yet
be important. We aim to construct a gauge over the unit ball and an annulus
where the gauge on the boundary is prescribed, as in Dirichlet boundary
conditions; however, due to the extra degree of freedom this makes these
boundary conditions confusing.

Lemma 4.2.4. Let E be a bundle over Bn with covariant derivative dÃ = d + Ã
and curvature ||FÃ||L∞ ≤ α. Assume a gauge is fixed on E|Sn−1 = E|∂Bn in
which dÃψ = d + Ãψ, |Ã(1, ψ)| ≤ α for all ψ ∈ Sn−1. Then there exists α1 =

α1(G) such that if α < α1, there exists a gauge on E|Bn in which dA = d + A,
Ãψ = Aψ on E|Sn−1 and ||A||L∞ ≤ κα.

Proof. Similarly to the previous lemma, this is an exercise in gauge match-
ing, although in this case we match an exponential gauge in Rn to an ex-
ponential gauge off the sphere. Let dA0 = d + A0 be the exponential gauge
from zero and match this by rotation with dA1 = d + A1, the exponential
gauge off the sphere. This fixes Ãψ. From (4.1), we have

|A0(x)| ≤ 1

2
|x|||FÃ||L∞ ≤

1

2
|x|α.

Similarly, from (4.2), we have

|A1(x)| ≤ 1

|x|
||Ãψ||+

(
|x|+ 1

|x|

)
||FÃ||L∞ ≤

3

|x|
α.
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Analogously to the previous lemma, we know that the two gauges are
related by a gauge change s(ψ), and that for α small enough, we have
S = S0 exp(ũ(ψ)), where ũ : Sn−2 → g. Due to the singularity at the origin,
we change the gauge from the origin by S̃(r, ψ) = S0 exp

(
r2ũ(ψ)

)
. Then,

A1 = S̃−1dS̃ + S̃A0S̃ on Sn−1

by construction, and the gauge given by

A = S̃−1dS̃ + S̃A0S̃ on Bn

satisfies

||A||L∞ ≤ κα.

Lemma 4.2.5. Let E be a bundle with covariant derivative dA over A = {x : 1 ≤
|x| ≤ 2} and curvature ||FA||L∞ ≤ α. Let Sn−1

t = {x : |x| = t}. Suppose gauges
are chosen on E|Sn−1

t
in which dÃtψ = d+ Ãtψ with |Ãtψ(t, ψ)| ≤ α for t = {1, 2}.

Then there exists α2 > 0 such that for α < α2, there is a gauge on E|A in which
dA = d+A, Ãtψ = Aψ on Sn−1

t for t = {1, 2}, and ||A||L∞ ≤ κα.

Proof. Construct exponential gauges off Sn−1
t for t = {1, 2} and then match

them on the sphere Sn−1
1 . Since dA = d+ Ã1 = d+ Ã2, Ã1 and Ã2 are related

by a gauge change. Therefore

S−1dS = Ã1 − Ã2.

Analogously to the previous lemmas, since Ã1 and Ã2 are in exponential
gauge, we find that s is independent of r, and that S = S0 exp û(ψ), where
û : Sn−2 → g, since |Ãtψ(1, ψ)| ≤ α. Then, change the gauge off Sn−1

2 by
Ŝ(r, ψ) = S0 exp

(
(2− r)2û(ψ)

)
, and the result follows.

Now that we have constructed gauges on our regions of interest, we
would like to prove that there exists a Coulomb gauge representative for
each one. In sight of the method of doing this in Chapter 1, we would like
to use the implicit function theorem to solve

d∗(S−1dS + S−1ÃS) = d∗A = 0,

for s when Ã is sufficiently small. Unfortunately, we have only constructed
A ∈ L∞(M, ad E ⊗ T ∗M), and you can only ‘trade’ derivatives for higher
integrability in the Sobolev embedding theorem, not the other way around.
As such, we are not able to use the map W 2,p → Lp, since we are not guar-
anteed that S ∈ W 2,p(M,Aut E), but only that S ∈ W 1,p(M,Aut E). As
such, we must use the map W 1,p → W−1,p, where W−1,p is the dual space
to W 1,q , where 1

p + 1
q = 1.

Theorem 4.2.6. LetE be a bundle over Sn−1 with covariant derivative dÃ = d+Ã
and curvature FÃ. Then there exists γ0 > 0 such that if ||FÃ||L∞ ≤ γ0, then there
exists a gauge in which dA = d + A and d∗A = 0. Furthermore, ||A||L∞ ≤
K||FA||L∞ . The choice of gauge is unique up to constant multiplication by an
element of G.
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Proof. For γ0 ≤ α0, by Lemma 4.2.3 we may construct a gauge dA = d + Ã
such that ||Ã||L∞ ≤ κ||FÃ||L∞ ≤ κγ0. For any∞ > p > n the expression

Q(u,B) = d∗[exp(−u)d exp(u) + exp(−u)Bu]

induces a smooth map

Q : W 1,p(Sn−1, g)× Lp(Sn−1, g⊗ T ∗M)→W−1,p(Sn−1, g)

as in Chapter 1. By Stokes’ Theorem we have that the image lies in

W−1,p
⊥ (Sn−1, g) = {ξ ∈W−1,p(Sn−1, g) : 〈ξ, u0〉 = 0, u0 ∈ g}.

where 〈·, ·〉 is the dual pairing. Note that although W−1,p is not the dual
of W 1,p unless p = 2, we may consider the elements of g as the constant
elements of W 1,p, which also lie in W 1,q, where 1

p + 1
q = 1, and so the dual

pairing makes sense. Likewise, we define

W 1,p
⊥ (Sn−1, g) =

{
u ∈W 1,p(Sn−1, g) :

∫
Sn−1

u = 0

}
to ensure that the if u ≡ C, then u ≡ 0. The linearisation of Q is then

dQ =

[
d
dtQ(u+ tv, B)|t=0
d
dtQ(u,B + tv)|t=0

]
.

Explicity, for d1Q(0,0) : W 1,p
⊥ (Sn−1, g)→W−1,p

⊥ (Sn−1, g), we have

d1Q(0,0) =
d

dt
Q(u+ tv, B)|t,u,B=0

=
d

dt
d∗(e−u−tvdeu+tv + e−u−tvBeu+tv)u,B=0

= d∗(−ve−udeu + e−ud(veu)− ve−uBeu + e−uBveu)|u,B=0

= (d∗dv + [B, v])|B=0

= d∗dv = ∆v.

Note that this map is injective since the only elements in the kernel of ∆ in
W 1,p(Sn−1, g) are constant functions, but the orthonality condition implies
that the only constant function in W 1,p

⊥ (Sn−1, g) is zero, and so ∆ is injec-
tive. Moreover, the map is surjective since for every g ∈ Lp there exists an
f ∈ W 1,p such that −∆f = g weakly by a standard existence argument for
Poisson’s equation - see, for example [52] Chapter 8. We see then that this
is a Banach space isomorphism. The implicit function theorem for Banach
spaces then establishes the existence of a solution to

Q(u, Ã) = d∗(S−1dS + S−1ÃS) = d∗A = 0,

provided Ã ∈ Lp(Sn−1, g ⊗ T ∗M) is sufficiently small, where S = expu ∈
W 1,p(Sn−1, G) and u ∈ W 1,p

⊥ (Sn−1, g). This is always possible, since we
may take γ0 small such that ||Ã||Lp ≤ C||Ã||L∞ ≤ Cκγ0. By construction,
the norm ||u||W 1,p is also assumed to be small, and so we have ||A||Lp ≤ (1+
κ)||Ã||L∞ , where A = S−1dS + S−1ÃS. By Hodge theory, see, for instance,
[57] Lemma 5.1, we have ||A||W 1,q ≤ C

(
||dA||Lp + ||d∗A||Lp + ||A||Lp

)
. Since
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|FA| = |FÃ|, we have FA ∈ L∞, and since d∗A = 0, FA = dA + A ∧ A, we
have the following estimate

||A||W 1,q ≤ C(||FA||Lq + ||A||2L2q + ||A||Lq).

Since we have A ∈ Lp, by setting q = p
2 , we have A ∈ W 1, p

2 . For p ≥ 3n
2 ,

which we have, since p > n, we have then by then Sobolev embedding
W 1, p

2 ↪→ L2p with the estimate ||A||L2p ≤ C||A||
W 1,

p
2

. Therefore, A ∈ W 1,p.
Then, for n ≥ 2, we have that q = 1

2
np
n−p > p, and that W 1,p ↪→ L2q, so we

get that A ∈ W 1,q. Iteratively, we define qi = 1
2
nqi−1

n−qi−1
with q0 = p, so that

||A||L2qi ≤ C||A||W 1,qi−1 , and we have that A ∈ W 1,qi . For 2qi > n for some
i ∈ N, we have that W 1,qi ⊂ L∞, and so we get the claimed estimate on
||A||L∞ .

Corollary 4.2.7. Under the hypothesis of Theorem 4.2.6 with n = 4, we have

(2−K||F ||L∞)

∫
S3

|A|2 ≤
∫
S3

|FA|2.

Proof. Since d∗A = 0 (A is co-closed) on S3, we have

λ1

∫
S3

|A|2 ≤
∫
S3

|FA|2,

where λ1 is the first eigenvalue of the Laplace operator on co-closed one
forms. By spectral analysis, see for instance [4], we have λ1 = 4. Since
FA = dA+A ∧A, we have(

4

∫
S3

|A|2
)1/2

≤
(∫

S3

|dA|2
)1/2

≤
(∫

S3

|FA|2
)1/2

+
(∫

S3

|A|4
)1/2

≤
(∫

S3

|FA|2
)1/2

+K||FA||L∞
(∫

S3

|A|2
)1/2

.

Theorem 4.2.8. Let D be a covariant derivative in a bundle over Bn. There exists
0 < γ1 < γ0 such that if ||F ||L∞ ≤ γ1, then there exists a gauge for E over Bn

such that if D = d + A in this gauge, then d∗A = 0 in Bn and d∗ψAψ = 0 on
Sn−1. Furthermore ||A||L∞ ≤ κ̃1||FA||L∞ .

Remark 4.2.9. By the notation dψ, we mean that index of the exterior deriva-
tive only runs over the co-ordinates ψ, not r. This is clearly the case if one
only considers the sphere, but we add the extra notation to specify that
the exterior derivative of the radial and spherical parts of A must be in
Coulomb gauge independently on the boundary spheres.

Proof of 4.2.8. Apply Theorem 4.2.6 to fix a gauge on Sn−1 = ∂Bn such that
d∗ψAψ = 0. In the construction of this gauge on the sphere, we have {Fij} =
{Fψψ}, and so ||Aψ||L∞ ≤ K||Fψψ||L∞ . Then, if Kγ1 ≤ α1 and γ1 ≤ α1, by
Lemma 4.2.4 we may construct a gauge over Bn such that if dÃ = d + Ã in
this gauge, then ||Ã||L∞ ≤ κ1γ1. We then intend to solve the equation

Q(u, Ã) = d∗A = d∗(S−1dS + S−1ÃS) = 0
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by the implicit function theorem. Here s = exp u, where u|Sn−1 = 0. For
p > n the map

Q : W 1,p
0 (Bn, g)× Lp(Bn, g⊗ T ∗M)→W−1,p(Bn, g),

is smooth. Then, since the Poisson equation with Dirichlet boundary con-
ditions always has a unique weak solution, see for instance Theorem 8.3 of
[52], the linearisation

d1Q(0, 0) = ∆ : W 1,p
0 (Bn, g)→W−1,p(Bn, g)

is an isomorphism. Since ||Ã||L∞ ≤ κ1γ1, we can make ||Ã||Lp arbitrarily
small by choosing γ1 small enough. We then apply the implicit function
theorem for Banach spaces to yield a solution, and the regularity of the
solution follows exactly the same argument as Theorem 4.2.6.

Theorem 4.2.10. Let D be a covariant derivative in a bundle E over A = {x :
1 ≤ |x| ≤ 2}. There exists γ′ > 0 such that if ||FA||∞ ≤ γ′, then there exists a
gauge in which dA = d + A, d∗A = 0 in A, d∗ψAψ = 0 on Sn−1

1 and Sn−1
2 , and∫

|x|=t
Ar = 0 for all t ∈ [1, 2]. Moreover, ||A||L∞ ≤ K ′||FA||L∞ .

Proof of Theorem 4.2.10. Firstly, we apply Theorem 4.2.3 on the boundary
spheres, Sn−1

t , t ∈ {1, 2} and construct Ã as in Lemma 4.2.5. Once again,
we want to solve the equation

Q(u, Ã) = d∗A = d∗(S−1dS + S−1ÃS) = 0,

for s = exp u; however, in order to preserve the condition that d∗ψAψ = 0,
we enforce the boundary conditions u = C on ∂A = Sn−1

1 ∪ Sn−1
2 , where

C : A→ g is any constant map. This motivates the definition

W 1,p
⊥ (A, g) = {u ∈W 1,p(A, g) : u|Sn−1

t
= const for t ∈ {1, 2} and

u is L2 perpendicular to the constants of g}.

As in the previous theorems, for p > n, Q induces a smooth map

Q : W 1,p
⊥ (A, g)× Lp(A, g⊗ T ∗M)→W−1,p(A, g).

The linearisation d1Q(0, 0) = ∆ : W 1,p
⊥ (A, g) → W−1,p(A, g) is injective

by the same argument as in Theorem 4.2.6 not an isomorphism, since the
solution is invariant under a rotation of a constant element of g. All is not
lost though, since if we add the map

f(u, Ã) : W 1,p
⊥ (A, g)× Lp(A, g⊗ T ∗M)→ g

given by f(u, Ã) =

∫
A
Ar =

∫
A
S−1 ∂

∂r
S + S−1ÃrS, where again S = exp u,

then we see the map

(d1Q(0, 0), d1f(0, 0)) : W 1,p
⊥ (A, g)→W−1,p(A, g)× g

u 7→
(

∆u,

∫
A

∂

∂r
u

)
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is an isomorphism. We see this by noting that u 7→ (0, 0) =⇒ u = const
over the whole domain, not just on the boundary. Since u is L2 perpen-
dicular to the constants of g over A, we must have u = 0. Therefore, we

may solve for d∗A =

∫
A
Ar = 0 when Ã is sufficiently small. Note that

our solution is actually stronger, since d∗A = 0 implies that the integral∫
|x|=t

Ar is independent of t, and so the condition that
∫
A
Ar = 0 implies

that
∫
|x|=t

Ar = 0 for every t ∈ [1, 2].

Corollary 4.2.11. (for n > 2). There exists a constant λ(n) such that if dA is
a covariant derivative dA = d + A in A with curvature ||FA||L∞ < γ′, d∗A =

0, d∗ψAψ = 0 and
∫
|x|=r

Ar = 0, then

(
√
λ(n)− κ′||F ||2L∞)

∫
A
|A|2 ≤

∫
A
|FA|2,

where λ(n) is the first eigenvalue of the Laplacian in n dimensions acting on A.

Proof. By definition, we can construct λ(n) as

λ(n) = inf
f 6=0

∫
A
|df |2∫

A
|f |2

,

where f ∈W 1,2(T ∗A), d∗f = 0, d∗ψfψ|Sn−1 = 0. We claim then that λ(n) > 0.
Clearly λ(n) ≥ 0, and so assume that λ(n) = 0. Then there exists an f
which satisfies the boundary conditions and f 6= 0 such that df = 0, i.e.
f is a closed 1-form. Since A is simply connected, every closed form is
exact, which means that there exists a 0-form g such that f = dg. Note
that since g is a 0-form d∗g = 0 by definition. On the boundary, we have
d∗ψdψg = d∗ψf = 0, so we must have g = constant on the boundary. Since
g is closed and co-closed, it is harmonic, i.e. ∆g = 0 in A. Therefore g is
a harmonic 0-form which is constant on the two boundaries. This implies

that g = c1 + c2r
n−2, but since

∫
|x|=t

fr =

∫
|x|=t

(n − 2)c2t
n−3 = 0, we have

c2 = 0 for all t ∈ [1, 2]. Therefore, g is constant on all of A, and so f ≡ 0 in
A, which is a contradiction.

Once we have established that the first eigenvalue is strictly greater than
0, the corollary follows by calculations exactly the same as in Corollary
4.2.7.

4.3 A Priori Estimates

In this section we prove some technical PDE lemmas which will be required
in the proof of the removable singularities. The main argument is a version
of the Moser iteration argument, which will allow us to gain stronger con-
trol of a function on an interior domain. We will assume that all covariant
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derivatives are smooth in some gauge. The difference in the cases where
the Riemannian curvature is zero and non-zero is unimportant to our cal-
culations, since it is only a lower order term, and so we will assume that M
is flat. Then we have the following lemma:

Lemma 4.3.1. If F is a Yang–Mills field, then

|F |∆|F | ≥ 2〈F, [F, F ]〉 = 2
∑
i,j,k

〈Fij , [Fjk, Fji]〉

∆|F | ≥ −4|F |2

Proof. From the first Bianchi identity, equation (2.4.4), and the Yang–Mills
equation, (2.9), we have that the Hodge Laplacian satisfies ∆AFA = 0. From
the Weitzenböck identity, equation 2.5, and since the underlying manifold
is flat we see that these two operators differ by a curvature of the connection
term when they act on two forms. Therefore, for any two form ψ,

(∇2 −∆)ψ = [F,ψ] =
{∑

j

[Fij , ψjk]− [ψji, Fjk]
}

The crude Laplacian can be used to estimate a scalar Laplacian on the norm.
We have the two expansions

d∗d|ψ|2 = 2|ψ|d∗d|ψ|+ 2|d|ψ||2 = 2|ψ|∆|ψ|+ 2|d|ψ||2

d∗d|ψ|2 = d∗d〈ψ,ψ〉 = 2
(
〈ψ,∇2ψ〉+ 〈∇ψ,∇ψ〉

)
,

Since∇ is a metric connection and |ψ|2 is scalar. Therefore, by equating the
two expansions and applying Kato’s inequality |d|ψ|| ≤ |∇ψ|2, we have

|ψ|∆|ψ| = 〈ψ,∇2ψ〉+ 〈∇ψ,∇, ψ〉 − |d|ψ||2 ≥ 〈ψ,∇2ψ〉

When ψ = F we have that (∇2 − ∆)F = [F, F ]. Since dA is a Yang–Mills
connection, we have ∆AFA = 0, and so

|F |∆|F | ≥ 2〈F, [F, F ]〉 = 2

〈
Fij ,

∑
i,j,k

{
[Fij , Fjk]− [Fji, Fjk]

}〉

From the estimate

2〈F, [F, F ]〉 ≤ 2|F ||[F, F ]| ≤ 4|F |3,

it follows that

∆|F | ≥ −4|F |2.

We now regard −4|F | = b as a fixed function and write the inequality
as

∆f ≥ −bf

in the weak sense for f = |F |. This which makes f a weak subsolution
and we may now apply a Moser iteration technique to conclude a stronger
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control of f on the interior of the domain. Although long, the following the-
orem is crucial in the removable singularities argument, and so we thought
it would be negligent to not include the fundamentals of the argument. For
any domain Br(x0) ⊂ BR(x0) we have the following theorem:

Theorem 4.3.2. (Chapter 4, Theorem 1.1 of [23]) Suppose that u ∈ H1(BR) is a
weak subsolution in the following sense∫

BR

aijDiuDjϕ+ buϕ ≤ 0 (4.3)

for any ϕ ∈ H1
0 (BR) and ϕ ≥ 0 in BR(x0). Suppose aij ∈ L∞(BR) and b ∈

Lq(BR) for some q > n
2 satisfy the following assumptions:

aij(x)ξiξj ≥ λ|ξ|2, for any x ∈ BR, ξ ∈ Rn,

and

||aij ||L∞ + ||b||Lq ≤ Λ

for some positive constants λ and Λ.Then u+ ∈ L∞loc(BR). Moreover, there holds
for any θ ∈ (0, 1)

sup
BθR

u+ ≤ C

(R− θR)
n
2

||u+||L2(BR)

where C = C(n, λ,Λ, q) is a positive constant.

Remark 4.3.3. The D in the above theorem refers to the multi-index nota-
tion of PDE, not any sort of connection.

Proof of Theorem 4.3.2. The theorem must first be proven for the case R = 1
and θ = 1

2 , and then the general case follows by a scaling argument. We
follow the method as prescribed by [23].

For some m, k > 0, set ū = u+ + k and ūm =

{
ū if u < m

k +m if u ≥ m
. Then

we have Dūm = 0 for {u < 0} and {u > m} and ūm ≤ ū. Then choose the
test function to be

ϕ = η2(ūβmū− kβ+1) ∈ H1(B1)

for some β ≥ 0 and some nonnegative function η ∈ C1
0 (B1). We then calcu-

late

Dϕ = βη2ūβ−1
m ūDūm + η2ūβmDū+ 2ηDη(ūβmū− kβ+1).

Since for u ≥ m we have Dūm = 0, and for u < m we have ūm = ū, we may
rewrite this as

Dϕ = η2ūβm(βDūm +Dū) + 2ηDη(ūβmū− kβ+1).
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Next, we substitute this into (4.3) and expand. Note that u+ ≤ ū, ūβmū −
kβ+1 ≤ ūβmū and that by the ellipticity condition we have

aij(x)Dj ūmDiūm ≥ λ|Dūm|2.

Therefore∫
BR

aijDiuDjϕ =

∫
BR

aijDiū(βDj ūm +Dj ū)η2ūβm

+ 2

∫
BR

aijDiūDjη(ūβmū− kβ+1)η

≥ λβ
∫
BR

η2ūβm|Dūm|2 + λ

∫
BR

η2ūβm|Dū|2

− 2Λ

∫
BR

|Dū||Dη|ūβmūη.

Then, note that by the Hölder inequality and Young’s inequality with ε,
where ε = λ

2Λ

2Λ

∫
BR

|Dū|ū
β
2
mη|Dη|ū

β
2
mū ≤ 2Λ

(∫
BR

η2ūβm|Dū|2
) 1

2
(∫

BR

|Dη|2ūβmū2

) 1
2

≤ λ

2

∫
BR

η2ūβm|Dū|2 +
2Λ2

λ

∫
BR

|Dη|2ūβmū2,

we have∫
BR

aijDiuDjϕ ≥ λβ
∫
BR

η2ūβm|Dūm|2 +
λ

2

∫
BR

η2ūβm|Dū|2 −
2Λ

λ

∫
BR

|Dη|2ūβmū2.

Therefore, from this calculation and from (4.3) for C = C(λ,Λ), we have

β

∫
BR

η2ūβm|Dūm|2 +

∫
BR

η2ūβm|Dū|2 ≤ C
{∫

BR

|Dη|2ūβmū2 +

∫
BR

aijDiuDjϕ

}
≤ C

{∫
BR

|Dη|2ūβmū2 +

∫
BR

|b|ūϕ
}

≤ C
{∫

BR

|Dη|2ūβmū2 +

∫
BR

|b|ū2η2ūβm

}
where the last inequality follows since ϕ = η2(ūβmū− kβ+1) ≤ η2ūβmū, since

ū > k. Now, set w = ū
β
2
mū. Now, by Young’s inequality with ε = 2β, we

have

|Dw|2 =

∣∣∣∣β2 ūβ2−1
m ūDūm + ū

β
2
mDū

∣∣∣∣2
≤ β2

4
ūβm|Dūm|2 + βūβm|Dūm||Dū|+ ūβm|Dū|2

≤ β2

4
ūβm|Dūm|2 +

β

4
ūβm|Dūm|2 + ūβmβ|Dū|2 + ūβm|Dū|2

≤ (β + 1)
{
βūβm|Dūm|2 + ūβm|Dū|2

}
.
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From this we have∫
BR

|Dw|2η2 ≤ C
{

(1 + β)

∫
BR

ūβmη
2|Dūm|2 + (1 + β)

∫
BR

η2ūβm|Dū|2
}

≤ C
{

(1 + β)

∫
BR

w2|Dη|2 + (1 + β)

∫
BR

|b|w2η2

}
,

and so∫
BR

|D(wη)|2 ≤ C
{

(1 + β)

∫
BR

w2|Dη|2 + (1 + β)

∫
BR

|b|w2η2

}
.

By assumption, we have ||b||Lq ≤ Λ, and a simple application of the Hölder
inequality yields∫

BR

|b|w2η2 ≤
(∫

BR

|b|q
) 1
q
(∫

BR

(ηw)
2q
q−1

)1− 1
q

≤ Λ

(∫
BR

(ηw)
2q
q−1

)1− 1
q

.

By the interpolation inequality, ||u||Lq ≤ ε||u||Lr +ε−µ||u||Lp , where r ≥ q ≥
p, we have

||ηw||
L

2q
q−1
≤ ε||ηw||L2∗ + ε−µ||ηw||Lp ,

where µ =

(
1
p
− 1
q

)
(

1
q
− 1
r

) and 1
p+ 1

q = 1. Therefore, we have p = q+1
2q and µ = n

2q−n .

Since p < 2 and by the Gagliardo-Nirenberg-Sobolev inequality (see, for
example, Chapter 9.3 of [10]), we have

||ηw||
L

2q
q−1
≤ ε||D(ηw)||L2 + C(n, q)ε

−n
2q−n ||ηw||L2

for small ε. Therefore, we may choose ε such that∫
BR

|D(wη)|2 ≤ C
{

(1 + β)

∫
BR

w2|Dη|2 + (1 + β)
2q

2q−n

∫
BR

w2η2

}
,

and in particular∫
BR

|D(wη)|2 ≤ C(1 + β)α
∫
BR

(|Dη|2 + η2)w2,

where α = α(n, q) > 0. Now, by the Gagliardo-Nirenberg-Sobolev inequal-
ity, we have(∫

BR

|wη|2χ
) 1
χ

≤
∫
BR

|D(wη)|2 ≤ C(1 + β)α
∫
BR

(|Dη|2 + η2)w2,

where χ = n
n−2 > 1 for n > 2 and χ > 2 for n = 2. We may then choose

the cutoff function as follows: For any 0 < r < R, set η ∈ C1
0 (BR) with the

property

η ≡ 1 in BR and |Dη| ≤ 2

R− r
.
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We then obtain (∫
Br

|w|2χ
) 1
χ

≤ C (1 + β)α

(R− r)2

∫
BR

w2.

Since we defined w = ū
β
2
mū, we then also have(∫

Br

ū2χūβχm

) 1
χ

≤ C (1 + β)α

(R− r)2

∫
BR

ūβmū
2.

Note that ūm ≤ ū, and so if we set γ = β + 1, we obtain(∫
Br

ūγχm

) 1
χ

≤ C (γ − 1)α

(R− r)2

∫
BR

ūγ ,

provided the integral on the right hand side is bounded. By lettingm→∞,
we conclude that

||ū||Lγχ(Br) ≤
(
C

(γ − 1)α

(R− r)2

) 1
γ

||ū||Lγ(BR),

provided ||ū||Lγ(BR) < ∞, where C = C(n, q, λ,Λ) > 0 and is independent
of γ.

This is the crucial step of the proof, in that we have obtained higher inte-
grability of a function on for the price of having to restrict to a smaller ball.
Such a process suggests an iterative argument, which we now demonstrate.
We begin the iteration with γ = 2m and iterate as

γi = 2χi and ri =
1

2
+

1

2i+1

for i = 0, 1, 2, .... By noting that γi = χγi−1 and ri−1− ri = 1
2i+1 , we have for

i = 1, 2, 3, ...,

||ū||Lγi (Bri ) ≤ C(n, q, λ,Λ)
1

χi ||ū||Lγi−1 (Bri−1 ).

By continuing this iteration, we obtain

||ū||Lγi (Bri ) ≤ C
∑ 1

χi ||ū||Lγi−1 (Bri−1 ),

and in particular (∫
B 1

2

ū2χi
) 1

2χi

≤ C
(∫

B1

ū2

) 1
2

.

By taking i→∞ and recalling the definition of the L∞ norm, we find that

sup
B 1

2

ū ≤ C||ū||L2(B1).
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We now let k → 0, and obtain

sup
B 1

2

u+ ≤ C||u+||L2(B1).

This completes the proof for the case of r = 1
2 , R = 1. The general result

follows by a dilation argument, although we refer to pp 79 of [23] for the
completion of this proof.

Remark 4.3.4. Theorem 4.3.2 actually applies in greater generality than we
have shown, although to show this in all of its generality would be superflu-
ous to our needs. For the full theorem, we refer to Theorem 1.1 of Chapter
4 of [23], although the theorem is well known.

Remark 4.3.5. The above theorem will be crucial in proving boundedness
of the curvature when the Lq norm is finite. Since we will be assuming
that the singularity occurs at the origin, the trade-off to L∞ regularity on a
smaller ball is justified, since the ball can be made arbitrarily small and still
contain the singularity.

The next two lemmas are by-products of the above calculation, although
we state and prove them explicitly for clarity.

Lemma 4.3.6. Let U ⊂ Rn, f ∈ W 1,2
loc (U) ∩ L∞loc(U), f ≥ 0, 1/2 < p < ∞,

ν = 2n
n−2 and u ∈ C∞0 (U). Then if

−∆f ≤ bf,∫
U
|d(ufp)|2 ≤

∫
U

[
p|p− 1|
2p− 1

|∆u2|+ (du)2

]
f2p

+
p2

2p− 1

(∫
U
b2/n

)n/2(∫
U

(ufp)ν
)2/ν

.

Proof. We may replace f with f + ε, prove the estimate for f + ε and then
let ε→ 0. Take u2f2p−1 as a test function. Then∫

U
d(u2f2p−1) · df = −

∫
U
u2f2p−1∆f ≤

∫
U
bu2f2p

Notice that

d(u2f2p−1) · df = f2p−1du2 · df + u2(2p− 1)f2p−2df · df

=
1

2p
du2 · df2p + (2p− 1)u2f2p−2|df |2,

and

d(ufp) = fpdu+ pfp−1udf

=⇒ |d(uf2p)|2 = f2p|du|2 + p2f2p−2u2|df |2 +
1

2
du2 · f2p

=⇒ |df |2f2p−2u2 =
d(ufp)|2

p2
− f2p|du|2

p2
− du2 · df2p

2p2
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Upon substitution, we find that

d(u2f2p−1) · df =
2p− 1

p2
|d(ufp)|2 − p− 1

2p2
(du2 · df2p)− 2p− 1

p2
|du|2f2p

The right hand side can be estimated by Hölder’s inequality, giving∫
U
b(ufp)2 ≤

(∫
U
bn/2

)2/n(∫
U

(ufp)ν
)2/ν

.

This gives us

2p− 1

p2

∫
U
|d(ufp)|2 ≤|p− 1|

p

∫
U
du2 · d(f2p)

+
2p− 1

p2

∫
U
|du|2f2p +

(∫
U
bn/2

)2/n(∫
U

(u2fp)ν
)2/ν

If we integrate the first term on the right by parts and multiply the entire
equation by p2/(2p− 1) we get the inequality as stated in the lemma.

Lemma 4.3.7. Assume the conditions of Lemma 4.3.6, and suppose for q ≤ 1 there
exists a constant cn such that if B(x0, a0) ⊂ U ,

cn −
(∫

U
|b|n/2

)2/n q2

2q − 1
> γ > 0.

Then for all B(x, 2a) ⊂ U , we have uf q ∈W 1,2(B(x, a)) with

a−n+2

∫
B(x,a)

|df q|2 ≤ cγa−n
∫
B(x,2a)

|f |2(
a−n

∫
B(x,a)

|f |qν
)2/qν

≤ c′γa−n
∫
B(x,2a)

|f |2.

Furthermore, cγ and c′γ depend only on γ, q and n. u is a smooth cutoff function
which is one on B(x, a) and 0 on B(x, 2a).

Proof. Lemma 4.3.6 applies with U = B(x, 2a) and 1 ≤ p ≤ q. Since the inte-
gral is dilation invariant, we may asume WLOG that a = 1. For ease of no-
tation, let K (u, p) = max[p|p−1|

2p−1 |∆u
2| + (du)2]. By applying the Gagliardo-

Nirenberg-Sobolev inequality with ν = 2n
n−2 ,

cn

(∫
U
|ufp|ν

)2/ν
≤
∫
U
|d(ufp)|2 ≤ K (u, p)

∫
U
f2p

+
p2

2p− 1

(∫
U
|b|n/2

)2/n(∫
U
|ufp|ν

)2/ν

For q ≥ p ≥ 1, p2

2p−1 is monotonically increasing, and so p2

2p−1 ≤
q2

2q−1 . This,
with the hypothesis of the lemma, gives

γ
(∫

U
|ufp|ν

)2/ν
≤ K (u, p)

∫
U
|f |2p
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and

γ

cn

∫
U
|d(ufp)|2 ≤ γ

cn

(
K (u, p)

∫
U
|f |2p

+
p2

2p− 1

(∫
U
|b|n/2

)2/n(∫
U
|ufp|ν

)2/ν
)

≤ γ

cn

(
K (u, p)

∫
U
|f |2p + (cn − γ)

(∫
U
|ufp|ν

)2/ν
)

≤ γ

cn
K (u, p)

∫
U
|f |2p +

(cn − γ)

cn
K (u, p)

∫
U
|f |2p

≤ K (u, p)

∫
U
|f |2p ≤ K (u, q)

∫
U
|f |2p.

Since u is a smooth cutoff function, this gives us a bound on theLνp norm on
domains interior to U by the L2p norm on the domain. Starting with p0 = 1,
we iterate the construction and can achieve q = pi in a finite number of
steps, thus obtaining the result.

Theorem 4.3.8. There exists a constant c′n such that if F is a Yang–Mills field in

B(x0, 2a0) and
∫
B(x0,2a0)

|F |n/2 < c′n, then |F (x)| is uniformly bounded in the

interor of B(x0, 2a0) and

|F (x)|2 ≤ a−nKn

∫
B(x,a)

|F |2.

Proof. Let b = 4|F | and |F | = f . Then, by letting c′n =
(
cn
4n

)n
2 , γ = cn

3 , q = n,
for n ≥ 2, we have that 2

3 >
n

2n−1 , and so we may apply Lemma 4.3.7. This
then gives us a bound on ||F ||Lnν , which gives us a bound on ||F ||Ln . We
may then apply Theorem 4.3.2, which gives us the desired result. Note that
the constants cn and Kn are not affected by the size of the ball, since the
integral is invariant under dilation.

Theorem 4.3.9. Let F be a smooth Yang–Mills field in a punctured ball U =

B(x0, a) − {x0} such that
∫
U
|F |q < ∞ for q > max( n

n−1 ,
n
2 ). Then |FA| is

uniformly bounded in the interior of B(x0, a0).

Before giving the proof we first explain the idea behind it. In Lemmas
4.3.6 and 4.3.7 we were able to find bounds of ||ufp||W 1,2 , where u is a suit-
able test function so that ||ufp||W 1,2 does not blow up. We would like to use
this construction, but keep control of exactly how much u ‘helps’ ||ufp||W 1,2

not blow up. In doing so we test exactly how close the test function can
come to being arbitrary whilst keeping control of ||ufp||W 1,2 . With this ap-
proach we find that the hypothesis of the Theorem are exactly the condi-
tions needed to enforce that ||fp||W 1,2 < ∞. This then allows us to use
Theorem 4.3.2 to conclude an L∞ bound.

Proof of Theorem 4.3.9. Let b = 4|F |, f = |F | and U = B(x0, a) − {x0} and
apply Lemmas 4.3.6 and 4.3.7. Here, let u = v + v′, where v is a cut-off
function which is zero at x0, v′ ∈ C∞0 (B(x0, a)). Firstly, we fix v′ in order
to deal exclusively with the badly-behaved part of the function. Let v(x −
x0) = ϕ(xε ), where ε has support in the unit ball. By doing this, we ensure
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that the support of v vanishes as ε → 0. In Lemma 4.3.6 we would like to
control the right hand side to not blow up as we take ε→ 0. This will mean
that our test function does not need to be zero at the singularity, and we
will then have fp ∈W 1,2(B(x, a)). On the right hand side of∫

U
|d(ufp)|2 ≤

∫
U

[
p|p− 1|
2p− 1

|∆u2|+ (du)2

]
f2p

+
p2

2p− 1

(∫
U
b2/n

)n/2(∫
U

(ufp)ν
)2/ν

,

we have that (∫
U
b2/n

)n/2(∫
U

(ufp)ν
)2/ν

<∞

for arbitrary u by hypothesis, and so we must consider the potential blow-

up of K (u, p)

∫
U
f2p. Since v′ is fixed we have that K (u, p) ∼ K (v, p) ∼

ε−2K(ϕ, p). We then have that

K (u, p)

∫
U
f2p ≤ ε−2K (ϕ, p)

∫
U
f2p

≤ ε−2K (ϕ, p)

∫
|x−x0|≤ε

f2p

≤ K (ϕ, p)ε
n(1− 2p

q
)−2
∫
U

(f q)
2p
q ,

where the indices of ε arise from dilation back to U and the change of index
of f. We see then, that if n(1− 2p

q )−2 > 0, then the contribution from v′ → 0
as ε → 0 and the test function chosen is arbitrary. So that K (u, p) doesn’t
blow up due to p we require that p > 1

2 , and this is clearly only possible if
and only if q > n

n−2 . By Lemmas 4.3.6 and 4.3.7 with U = B(x0, a) we find
that fp ∈W 1,2(x0, a). Since we have that q > n

2 by hypothesis, we may now
apply Theorem 4.3.2 to find a bound on |FA| in B(x0, a).

4.4 Removability of Singularities

In this section we utilise all the machinary which has been built up in the
previous two sections to prove the following removable singularities theo-
rem.

Theorem 4.4.1. Let dA be a Yang–Mills connection in a bundle E over B4−{0}.

If the L2 norm of the curvature FA of dA is finite,
∫
B4

|FA|2 < ∞, then there

exists a gauge in which the bundle E extends to a smooth bundle Ē over B4 and
the connection dA extends to a smooth Yang–Mills connection dĀ in Ē.

Proof. As with the proof of the existence of Coulomb gauges, we will ap-
proach the proof of removable singularities in steps. The first step is to use
the gauge construction of Section 4.2 to construct a gauge over B4 − {0}.
We do this by splitting the unit ball into a dyadic domain and constructing
a Coulomb gauge on each of these annuli such that they satisfy a continuity
condition on the boundary. We call this a broken Coulomb gauge. We then
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use the Yang–Mills equation on this broken Coulomb gauge to show that
the curvature is uniformly bounded over the origin. We may then apply
Theorem 4.2.8 to complete the proof. The formal construction and defini-
tion of the broken Coulomb gauge is as follows: Let

A` = {x : 2−`−1 ≤ |x| ≤ 2−`} for ` = {0, 1, 2, ...}
S` = {x : |x| = 2−`} for ` = {0, 1, 2, ...}

Definition 4.4.2. A broken Coulomb gauge for a connection dA in a bundle
E overBn−{0} is a gauge related to the original gauge in which dA = d+A
and A|A` = A(`) have the following properties for all ` ≥ 0

(i) d∗A(`) = 0 in A`

(ii) Aψ(`)|S` = Aψ(`− 1)|S`
(iii) d∗ψAψ(`) = 0 on S` and S`+1

(iv)
∫
S`

Ar(`) =

∫
S`+1

Ar(`) = 0.

Note that (i) means that the gauge is Coulomb gauge in A`. Condition
(ii) implies that the induced connection on the pull-back bundle E|S` is the
same from the gauges given in A` and A`−1, although this is actually in-
sured by the condition that the gauge be continuous. Condition (iii) ensures
that the gauge is still Coulomb independently on the sphere, and condition
(iv) allows us to apply Theorem 4.2.10 and Corollary 4.2.11.

Claim 4.4.3. If the hypotheses of 4.4.1 hold, given any ε > 0, we may assume∫
B(0,2)

|F |2 ≤ ε2

Proof. If
∫
B4

|F |2 <∞, then lim
r→0

∫
|x|≤r

|F |2 = 0. Assume then, that
∫
|x|≤ρ

|F | ≤

ε2. We then change co-ordinates by y = 2x
ρ . Then F (x) pulls back to a Yang–

Mills field F̃ (y) on {y : 0 < |y| ≤ 2} and∫
B(0,2)

|F̃ (y)|2dy =

∫
|x|≤ρ

|F (x)|2dx ≤ ε2.

By the dilation property of the Lebesgue integral. Note, however, that the
uniformity of the estimates is lost in passing from F̃ back to F .

Claim 4.4.4. Under the hypotheses of 4.4.1, if
∫
B(0,2)

|F |2 ≤ C ′, then

|F (x)|2 ≤ |x|−4k

∫
B(0,2|x|)

|F |2

for |x| ≤ 1. Here C ′ = C ′4 and k = k4 are the constants from Theorem 4.3.8 with
n = 4.

Proof. If |x| ≤ 1, then B(x, |x|) ⊂ B(0, 2) and∫
B(x,|x|)

|F |2 ≤
∫
B(0,2)

|F |2 ≤ C ′4
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We can then apply Theorem 4.3.8 to achieve the result.

The following is true in all dimensions.

Claim 4.4.5. There exists γ′(= γn) > 0 such that if dA is a smooth connection in
Bn − {0}, and the growth on the curvature satisfies |F (x)||x|2 ≤ γ ≤ γ′, then
there exists a broken Coulomb gauge in Bn − {0} satisfying

(v) |A(`)(x)| ≤ κ′||FA(`)||L∞2−(`+1) ≤ κ′γ2`+1

(vi) (λ(n)− k2ω2)
∫
A(`) |A(`)|2 ≤ 2−2(`+1)

∫
A(`) |FA(`)|2

Proof. By dilating each annulus A` by y = x2`+1, we bring A` into A of The-
orem 4.2.10, on which the curvature is denoted F̃ (y). In local co-ordinates,
F (x) = Fij(x)dxi ∧ dxj is a two form on A`, and f = y

2`+1 is a smooth
mapping from A to A`, so the pullback f∗F (x) is a two form on A, given
by F̃ (y) = 2−2(`+1)Fij(f(y))dyi ∧ dyj . From this, we see that |F̃ (y)| =
2−2(`+1)|F (x)|. Therefore, |F̃ (y)||y|2 = |F (x)||x|2 ≤ γ, and so ||F̃ ||L∞ ≤ γ.
We may then apply Theorem 4.2.10 to dA(`) to extract a gauge on which
(i)− (iv) are true, and then dilate the annulus back to the original one. It is
not immediately obvious that it is necessary that the construction of gauges
on the annuli must agree on boundary spheres. Recall from Theorem 4.2.6
that the choice of gauge on a sphere where d∗ψAψ = 0 is unique up to multi-
plication by a constant element ofG. Therefore the gauge constructed on A`
and A`−1 differ by a constant element g` ∈ G on their mutual boundary S`.
Therefore, rotate the gauge on A` by h` = g`g`−1 . . . g1. By Theorem 4.2.10
we have ||A(y)||L∞ ≤ κ′||F (y)||L∞ ≤ κ′γ, and so after dilating back to the
original anulus, we have condition (v). Condition (vi) follows by applying
Corollary 4.2.11 and then dilating.

We now restrict our attention to 4 dimensions again.

Claim 4.4.6. Let n = 4. Then there exists ε > 0 such that if dA is a Yang–Mills

connection in B(2, 0)− {0} and
∫
B(2,0)

|F |2 ≤ ε2 then

(
1− ω

(∫
|x|≤2r

|FA|2
)1/2

)(∫
|x|≤r

|FA|2
)
≤ 1

4
r

∫
|x|=r

|FA|2.

Proof. From Claim 4.4.4, if we choose ε2 ≤ C ′, then we may apply Claim
4.4.4 to get

|F (x)|2 ≤ k|x|−4

∫
A
|F |2.

Since
∫
A
|F |2 ≤ ε2, we get |F (x)||x|2 ≤

√
kε2. Therefore, if

√
kε2 ≤ min(γ0, γ1, γ

′),

we may then apply Claim 4.4.5 to yield the existence of a broken Coulomb
gauge on B(2, 0) − {0}. By integration by parts, we may then estimate
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∫
A
|F |2 in the Coulomb gauge. We will estimate the curvature on each an-

nulus A`. ∫
A`

|FA(`)|2 =

∫
A`

〈dA(`) +A(`) ∧A(`), FA(`)〉

=

∫
A`

〈dAA(`)−A(`) ∧A(`), FA(`)〉,

Going from the first to the second equality is not at all obvious. Note, how-
ever, that since A(`) is a one-form, we have dA(A · s) = (dAA) · s−A · (dAs),
and so (dAA) · s = dA(A · s) +A · (dAs), which is the same as

(dAA) · s = (d+A)(As) +A((d+A)s)

= (dA)s−A ∧ ds+ (A ∧A)s+A ∧ ds+ (A ∧A)s

= (dA)s+ 2(A ∧A)s,

and so we see that dAA−A∧A = FA, which gives the second equality. By the
cyclic property of the trace norm introduced in Section 2.7 and integration
by parts, we have∫

A`

|FA(`)|2 =

∫
A`

〈A(`),−(d∗AFA(`) +A(`) ∧ FA(`))〉

+

∫
S`

〈Aψ(`), Frψ〉 −
∫
S`+1

〈Aψ(`), Frψ(`)〉.

Where the boundary terms with Ar in them go to zero by Hölder’s in-

equality and the fact that
∫
S`

Ar = 0, and the 〈Aψ, Fψψ〉 term doesn’t ap-

pear since it’s not a normal term. We then sum this over ` ≥ 0, and we
see that the boundary terms are telescoping and this leaves only S0, since
Aψ(`) = Aψ(`−1) on S` and the curvature FA is continuous across S`. Since
dA is a Yang–Mills connection, we have d∗A(`)FA(`) = 0, and so∫
A`

〈dA(`)A(`)−A(`) ∧A(`), FA(`)〉 =

∫
A`

〈A(`),−A(`) ∧ FA(`)〉

+

∫
S`

〈Aψ(`), Frψ(`)〉 −
∫
S`+1

〈Aψ(`), Frψ(`)〉

= −
∫
A`

〈A(`) ∧A(`), FA(`)〉

+

∫
S`

〈Aψ(`), Frψ〉 −
∫
S`+1

〈Aψ(`), Frψ(`)〉∫
A`

〈dA(`)A(`), FA(`)〉 =

∫
S`

〈Aψ(`), Frψ〉 −
∫
S`+1

〈Aψ(`), Frψ(`)〉∫
A`

〈FA(`) +A(`) ∧A(`), FA(`)〉 =

∫
S`

〈Aψ(`), Frψ〉 −
∫
S`+1

〈Aψ(`), Frψ(`)〉.

Moreover, the boundary terms become negligible as `→∞;

lim
`→∞

∫
S`+1

〈Aψ(`), Frψ(`)〉 = 0. This is because we have that |FA| ∼ 1
|x|2 by

Claim 4.4.4, |Aψ(`)| is bounded and that vol(S`) ∼ |x|3 as |x| → 0. Therefore
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the |x|3 terms dominates the 1
|x|2 term and we have that the integral goes to

zero as |x| tends to zero. Therefore, summing over `, we have

∞∑
`=0

∫
A`

〈FA(`) +A(`) ∧A(`), F (`)〉 =

∫
S0

〈Aψ(0), Frψ(0)〉

≤
(∫

S0

|Aψ|2
) 1

2
(∫

S0

|Frψ|2
) 1

2

. (4.4)

By construction, the restriction of the connection to η|S0 is given by dAψ =
dψ +Aψ with d∗ψAψ = 0. Applying Corollary 4.2.7 yields

(2−K||F ||L∞)

∫
S0

|Aψ|2 ≤
∫
S0

|Fψψ|2.

Note that there is noFrψ component because we are restricting to the sphere,
so FA = Fψψ. Analogously, by Corollary 4.2.11 we have∣∣∣∣ ∫

A`

〈FA(`), A(`) ∧A(`)〉
∣∣∣∣ ≤ ||FA(`)||L∞

∫
A`

|A(`)|2

≤ 2−2(`+1)||F (`)||L∞(λ4 − κ′2−4(`+1)||FA(`)||2L∞)−1

∫
A`

|FA(`)|2,

where the factor of 2−2(`+1) again arises from the dilation from A` to the
standard annulus. By Claim 4.4.4, we have

2−2(`+1)||FA(`)||L∞ ≤
√
k

(∫
|x|≤2−`

|FA(`)|2
) 1

2

≤
√
k

(∫
|x|≤2

|FA|2
) 1

2

≤ ε
√
k,

and if we assume that κ′kε2 ≤ λ4
2 , then we get the simplified estimate∣∣∣∣ ∫

A`

〈FA(`), A(`) ∧A(`)〉
∣∣∣∣ ≤ 2

√
k

λ4

(∫
|x|≤2

|FA|2
) 1

2
∫
A`

|FA(`)|2.

Note that although B4 =

∞⋃
`=0

A` ∪ {0}, we have that

∫
B4

|FA|2 =

∫
⋃∞
`=0 A`

|FA|2,

since {0} has (Lebesgue) measure zero. Putting all these estimates together
into (4.4), we have∫
B=

⋃
A`

|FA|2 ≤
2
√
k

λ4

(∫
|x|≤2

|FA|2
) 1

2
∫
∑

A`

|FA|2+(
2−
√
kK
(∫
|x|≤2

|FA|2
) 1

2

)−1(∫
|x|=1

|Fψψ|2
) 1

2
(∫
|x|=1

|Frψ|2
) 1

2

.
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Rearranging this inequality, we have(
2−
√
kK
(∫
|x|≤2

|FA|2
) 1

2

)∫
|x|≤1

|FA|2

≤
(

2−
√
kK
(∫
|x|≤2

|FA|2
) 1

2

)
2
√
k

λ4

(∫
|x|≤2

|FA|2
) 1

2
∫
|x|≤1

|FA|2

+

(∫
|x|=1

|Fψψ|2
) 1

2
(∫
|x|=1

|Frψ|2
) 1

2

(
2−
√
kK
(∫
|x|≤2

|FA|2
) 1

2

)(
1− 2

√
k

λ4

(∫
|x|≤2

|FA|2
) 1

2

)∫
|x|≤1

|FA|2

≤
(∫
|x|=1

|Fψψ|2
) 1

2
(∫
|x|=1

|Frψ|2
) 1

2

≤ 1

2

∫
|x|=1

|FA|2,

where the last inequality comes from the inequality of arithmetic and geo-
metric means,

√
a
√
b ≤ 1

2(a+ b). By expanding the term on the left, we see
that (

1− ω
(∫
|x|≤2

|FA|2
)2
)∫
|x|≤1

|FA|2 ≤
1

4

∫
|x|=1

|FA|2,

where ω =
√
k( 2

λ4
+ K

√
k

2 ), and this proves the result for r = 1, which gives
the result for any r by dilation.

Claim 4.4.7. Let n = 4. Then, if dA is a Yang–Mills connection in B(2, 0)− {0}

satisfying
∫
|x|≤2

|FA|2 ≤ ε2, then ||FA||L∞ is bounded in |x| ≤ 2.

Proof. Let ε be the same as in Claim 4.4.6, and assume in addition that 1 −
ωε = γ > 0. Then we have

(1− ωε)
∫
|x|≤r

|FA|2 ≤
r

4

∫
|x|=r

|FA|2.

Let f(r) =

∫
|x|≤r

|FA|2, then f ′(r) =

∫
|x|=r

|FA|2, and

f ′(r)

f(r)
≥ 4(1− ωε)

r
.



80 Chapter 4. Removable Singularities in Yang–Mills Fields

If we then integrate between r and 1, we get∫ |x|=1

|x|=r

4(1− ωε)
r

dr ≤
∫ |x|=1

|x|=r

f ′(r)

f(r)
dr

−4(1− ωε) ln r ≤ ln
f(1)

f(r)

ln r−4(1−ωε) ≤ ln
f(1)

f(r)

f(r) ≤ r4(1−ωε)f(1).

Since f(1) ≤ f(2) ≤ ε2, we have∫
|x|≤r

|FA|2 ≤ r4γε2.

With this new bound on f(r), we may then apply Claim 4.4.6 again to get

4(1− ω(rd)2γε)f(r) ≤ rf ′(r),

which then integrate again to find

f(r) ≤ r4 exp

(
4ωε

γ

)
f(1)

for γ ≤ 1
2 . To complete the proof, observe that by Claim 4.4.4, we have

|F (x)|2 ≤ r−4k

∫
B(0,2r)

|FA|2 = r−4kf(2r)

≤ k24 exp

(
4ωε

γ

)
f(1),

which gives a bound of ||FA||L∞ , as claimed.

Claim 4.4.8. Let dA be a Yang–Mills connection on B4 − {0} = {x ∈ R4 : 0 <
|x| ≤ 1} and assume that ||FA||qLq(Bn) < ∞ for q ≥ 2. Then there exists a gauge
in which the bundle E extends smoothly to Ē over x = 0 and dA extends to a
smooth dĀ in Ē which is Yang–Mills.

Proof. In the case that q > 2 we may apply Theorem 4.3.9, and in the case
that q = 2 we apply Claim 4.4.3 and then Claim 4.4.7 to show uniform
boundedness. By Claim 4.4.3 we may assume that ||FA||L∞(B4) < γ1, where
γ1 is the constant of Theorem 4.2.8. We may then apply Theorem 4.2.8 which
yields a new gauge, dĀ in which we have d∗Ā = 0 in Bn. The smoothness
is given by Theorem 5.3 of [38]. Since dA is Yang–Mills over Bn − {0}, dĀ is
Yang–Mills over Bn.

This concludes the proof of the removable singularities theorem in di-
mension 4.



4.4. Removability of Singularities 81

Remark 4.4.9. Note that although we have explicitly constructed a bound
for ||FA||L∞ , by Theorem 4.3.9, all we needed to show was that the curva-

ture had growth |FA| ∼
1

|x|2−ε
for any ε > 0 to show that the curvature is

actually bounded.

Since Uhlenbeck published her removable singularities result there has
been a significant improvement, in that the hypothesis of the theorem only
requires finite energy of the the connection and does not require that the
connection be Yang–Mills. This was published by Uhlenbeck as Theorem
2.1 in [55], although a more modern proof can be found as Theorem 6.2 in
[40]. The removability of singularities is important in the construction of
the long time solution to the Yang–Mills heat flow problem, and we give a
brief discussion on this at the end of the next chapter.
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Chapter 5

Yang–Mills Heat Flow Over
Real Four-Manifolds

5.1 Introduction

In this chapter we explore the heat flow method used to construct weak
solutions of the Yang–Mills equations. Heat flow methods are somewhat
classical in differential geometry, and applying this method to the Yang–
Mills equations was first suggested by Atiyah and Bott in [1]. Recall that

YM(D) =
1

2

∫
M
|FD|2 ∗ (1)

is the Yang–Mills functional, whereM is again a smooth, finite dimensional,
compact, boundary-free, orientable Riemannian manifold. The Euler-Lagrange
equation of this functional is given by

D∗FD = 0,

which is a non-elliptic system of equations. The heat flow approach aims to
deform a connection along the path of steepest descent of the functional in
the hope that it will converge to a limiting Yang–Mills connection. Namely,
we have the following initial value problem:{

d

dt
D = −D∗FD

D(0) = D0.
(YMHF)

Analogously to howYMp(·) is not an elliptic operator as discussed in Chap-
ter 3, this problem is non-parabolic because of the gauge invariance. As
such, the equation doesn’t exhibit the smoothing properties of homoge-
neous parabolic equations which we’ve come to know and love. This makes
the analysis of the equations that much more complicated in that it raises
significant questions around existence and regularity of solutions. More-
over, the solutions could concentrate, which prohibits the convergence of
the flow to a limiting Yang–Mills connection.

Another major challenge for the analysis of these equations is that the
system must be treated globally - it is not possible to analyse the system
on co-ordinate patches of M and then patch it together, as we have done
in previous chapters. For the reasons discussed in Section 2.9 we must al-
ways treat the system globally. Note the difference between this case and
the previous chapters - in Chapter 1 and 2 we denoted D = dA globally by
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an abuse of notation, because we were not trying to minimise D, but rather
trying to find more convenient representatives of a choice of connection.
This is different to our goal in this section where we try to find a global
minimiser of YM(D) by deforming D. For this reason we refrain from our
previous abuse of notation to emphasise that a connection is a necessarily
global object.

The Yang–Mills problem has been treated extensively under various dif-
ferent hypotheses, most notably by Donaldson in [14], where he solves the
problem in the smooth case in the critical dimension, and by Råde, who con-
sidered the problem under weaker hypotheses in dimensions ≤ 3 in [43]. It
is Struwe’s 1994 paper, [48], which first addresses the problem over real four
manifolds under the weakest possible regularity assumptions. Struwe’s pa-
per establishes short-time existence and , but does not address the problem
of long-term behaviour, and it is his student, Schlatter, in his 1995 PhD dis-
sertation, [45], which establishes the long term behaviour of the flow. In this
chapter we will follow Struwe’s original proof of the short term existence
and uniqueness of the Yang–Mills heat flow, although we provide commen-
try on alternative approaches to various different steps in the proof.

5.2 Statement of the Theorem

Before we state the theorem, however, we must introduce the notion of a
weak solution of the YMHF. Let (E, π,M) be a vector bundle over M , a
smooth Riemannian manifold of dimension four.

Definition 5.2.1. A family D = D(t) of connections on E is a weak solution
of the YMHF if D = Dref +A(t) with

A ∈ L1

(
[0, T ) : L2

(
Ω1(ad E)

))
,

FD ∈ L∞
(

[0, T ) : L2
(
Ω2(ad E)

))
,

and if for any φ ∈ C∞
(
[0, T ] : Ω1(ad E)

)
vanishing near t = 0 and t = T

there holds ∫ T

0

{(
A,

d

dt
φ

)
− (FD, Dφ)

}
dt = 0.

Remark 5.2.2. As Struwe notes, this is the weakest possible notion of a so-
lution. This is because in order to interpret FD = D ◦D in the distributional
sense, we require that A ∈ L2 in space almost everywhere. Furthermore,
since the term (FD, Dφ) involves the product of F and A, we require that
FD ∈ Lq(L2) andA ∈ Lp(L2), where p, q ∈ R are conjugate exponents. Note
that have used the notation which we introduce in equation (5.4).

Although this is the weakest possible notion of a solution of the YMHF,
Struwe is able to attain a stronger solution in the following:

Theorem 5.2.3. For any connection D0 of class H1 on E such that YM(D0) <
+∞, there is a T > 0 and a weak solution D = Dref + A to the YMHF for
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0 ≤ t < T such that

A ∈ C0
(

[0, T ) : L2
(
Ω1(ad E)

))
∩H1

(
[0, T ) : L2

(
Ω1(ad E)

))
,

FD ∈ C0
(

[0, T ) : L2
(
Ω2(ad E)

))
.

Moreover,D is gauge equivalent to a smooth solution of the YMHF in the following
sense: There is a solution D̂ = Dref + Â of the YMHF with

Â ∈ H1
(

[0, T ) : L2
(
Ω1(ad E)

))
∩ C0

(
[0, T ) : L2

(
Ω1(ad E)

))
and smooth for 0 < t < T , and a sequence of smooth gauge transformations
Ŝk ∈ G and a sequence tk ↘ 0 such that Ŝk → Ŝ0 in H1, Ŝ∗k

(
D̂(tk)

)
→ D0 in

H1, and D = Ŝ∗0(D̂). D is smooth if D0 is smooth. Furthermore:

(i) If D is irreducible in the sense of (5.25) for all t, then D is unique.

(ii) The maximal existence time T is characterised by

T =

{
t̄ > 0 : ∃ R > 0 : sup

x0∈M
0≤t≤t̄

(∫
BR(x0)

|FD(t)|2 ∗ (1)

)
< ε0

}
(5.1)

where ε0 = ε0(E) > 0, At t̄1 = T , the curvature concentrates in at most
finitely many points x̄j1, where j = 1, ..., J1 in the sense that for all R > 0

lim sup
t↗t̄1

∫
BR(xj1)

|FD(t)|2 ∗ (1) ≥ ε0.

There is clearly a lot to unpack in this theorem, and this whole chapter is
devoted to its proof. We first introduce some preliminary estimates in sec-
tion 5.3 before proving the local existence to the flow in section 5.4. We then
continue to consider gauge equivalent solutions of the flow in section 5.5.
In section 5.6 we consider the problem of uniqueness before characterising
the maximal existence time in section 5.7.

5.3 Some Preliminary Estimates

In this section we give several definitions and results which we will con-
stantly refer back to during the rest of the paper. Our first estimate is a
Calderon-Zygmund type inequality which comes as a consequence of the
Weizenböck formula, equation (2.5).

Lemma 5.3.1. Let D = Dref + A, A ∈ C1(Ω1(ad E)). There exist constants
C1 = C1(E), C2 = C2(E, ||A||C1) such that for any φ ∈ H2(Ωi(ad E)) there
holds

||φ||2H2 ≤ C1||∆Dφ||2L2 + C2||φ||2L2 (5.2)

Proof. Firstly, by the Weitzenböck identity, equation (2.5), we have

||∆Dφ||2L2 = ||∇∗∇φ+ F#φ+ Rm#φ||2L2 .
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Suppose first that A = 0, D = Dref, ∆ = ∆ref. By Minkowski’s inequality,
we then have

||∆Dφ||2L2 ≥ ||∇∗∇φ||2L2 − C||φ||2L2 ,

where C = ||F ||L∞ + ||Rm||L∞ = C(E). Note that by the definition of the
covariant derivative and its L2 dual (see, for instance Appendix II of [32]),
we have

∇∗∇φ = ∇∇∗φ+ FD#φ+ Rm#φ,

and so interchanging the order of derivatives introduces further curvature
(both of the connection and of the underlying manifold) terms. With this in
mind, note that

(∇∗∇φ,∇∗∇φ) = (∇φ,∇∇∗∇φ)

= (∇φ,∇∗∇∇φ+ FD#∇φ+ Rm#∇φ)

= (∇∇φ,∇∇φ) + (∇φ, FD#∇φ+ Rm#∇φ),

and so

||∇∗∇φ||2L2 + (∇φ, FD#∇φ+ Rm#∇φ) = ||∇2φ||2L2

||∇∗∇φ||2L2 + C(E)||∇φ||2L2 ≥ ||∇2φ||2L2

||∇∗∇φ||2L2 ≥ ||∇2φ||2L2 − C(E)||∇φ||2L2

By the Gagliardo-Nirenberg interpolation inequality (see, for example, Chap-
ter 9 of [10]) and Young’s inequality with ε = 1

2C , we have for n = 4 that

||∇φ||L2 ≤ C||∇2φ||
1
2

L2 ||φ||
1
2

L2 ≤
1

4
||∇2φ||L2 + C||φ||L2 .

Therefore, we have

||∇∗∇φ||2L2 ≥
1

2
||∇2φ||2L2 − C(E)||φ||2L2 ,

and the claimed inequality follows, since we then have

||∆Dφ||2L2 ≥
1

2
||∇2φ||2L2 − C(E)||φ||2L2 .

In the general case, we have

∆Dφ = [(Dref +A)∗(Dref +A) + (Dref +A)(Dref +A)∗]φ

= (Dref +A)∗(Drefφ+A#φ) + (Dref +A)(D∗refφ+A#φ)

= ∆refφ+∇refA#φ+A#∇refφ+A#A#φ.

(5.3)

Since by the previous calculation we have

||φ||2H2 ≤ C1||∆refφ||2L2 + C2||φ||2L2 .
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With this in mind, we see that

||∆Dφ||2L2 ≥ ||∆refφ||2L2 − ||A#∇refφ||2L2 − ||∇refA#φ||2L2 − ||A#A#φ||2L2

≥ C(E)−1||φ||2H2 − C(E, ||A||L∞ , ||∇A||L∞)||φ||2L2

and the claimed inequality holds in general.

We now introduce some notation which will be used throughout the
chapter. We denote

L`(Hm) := L`
(

[0, T ];Hm
(
Ωi(ad E)

))
. (5.4)

Moreover, we use double indices to denote the space-time Lp − Lq norms.

||φ||Lq,p :=

(∫ T

0
||φ(t)||qLp dt

)1/q

, 1 ≤ p, q <∞.

In particular, || · ||L2,2 denotes the L2-norm over space-time. For ease of
notation, for any T > 0 we introduce the space

V = VT (Ωi(ad E)) = L2
(

[0, T ];H2
(
Ωi(ad E)

))
∩H1

(
[0, T ];L2

(
Ωi(ad E)

))
.

Note that since

1

2

d

dt
(φ, φ) =

(
d

dt
φ, φ

)
≤
∣∣∣∣∣∣ d
dt
φ
∣∣∣∣∣∣
L2
||φ||L2 ≤

1

2

(∣∣∣∣∣∣ d
dt
φ
∣∣∣∣∣∣2
L2

+ ||φ||2L2

)

and for ∇ = ∇ref, since the covariant and time derivatives commute, we
have

1

2

d

dt
(∇φ,∇φ) =

(
∇ d

dt
φ,∇φ

)
=
( d
dt
φ,∇∗∇φ

)
≤
∣∣∣∣∣∣ d
dt
φ
∣∣∣∣∣∣
L2
||∇2φ||L2 ≤

1

2

(∣∣∣∣∣∣ d
dt
φ
∣∣∣∣∣∣2
L2

+ ||∇2φ||2L2

)
.

We have the continuous embedding V ↪→ L∞
(

[0, T ];H1
(
Ωi(ad E)

))
with

sup
0≤t≤T

||φ(t)||2H1 ≤ ||φ(0)||2H1 + 2||φ||2V , (5.5)

where we have used

||φ||2V :=
∣∣∣∣∣∣ d
dt
φ
∣∣∣∣∣∣2
L2,2

+ ||φ||2L2(H2).

We have in fact that V ↪→ C0
(

[0, T ];H1
(
Ωi(ad E)

))
, although we refer to

Theorem 3.1 of [33] for a proof.

Lemma 5.3.2. LetD = Dref+A,A ∈ C1(Ω1(adE)). Then there exists a constant
C2 = C2(E) and a number T = T (E,A) > 0 such that for any φ ∈ VT there
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holds

||φ||2V ≤ C2

∣∣∣∣∣∣( d
dt

+ ∆D

)
φ
∣∣∣∣∣∣2
L2,2

+ C2||φ(0)||H1 ;

Proof. By expanding
((

d
dt + ∆D

)
φ,
(
d
dt + ∆D

)
φ
)

, we get

∣∣∣∣∣∣( d
dt

+ ∆D

)
φ
∣∣∣∣∣∣2
L2,2

=
∣∣∣∣∣∣ d
dt
φ
∣∣∣∣∣∣2
L2,2

+ ||∆Dφ||2L2 + 2
( d
dt
φ,∆Dφ

)
for almost every t. By Lemma 5.3.1 we have

||∆Dφ||2L2 ≥ C(E)−1||φ||2H2 − C(E, ||A||C1)||φ||2L2 .

Moreover, by the Weizenböck identity, equation 2.5, and (5.3) we have

2
( d
dt
φ,∆Dφ

)
≥ 2
( d
dt
φ,∆refφ

)
− C(E, ||A||C1)

∣∣∣∣∣∣ d
dt
φ
∣∣∣∣∣∣
L2
||φ||H1

≥ 2
( d
dt
φ,∇∗ref∇refφ

)
− C(E, ||A||C1)

∣∣∣∣∣∣ d
dt
φ
∣∣∣∣∣∣
L2
||φ||H1

=
d

dt
||∇refφ||2L2 − C(E, ||A||C1)

∣∣∣∣∣∣ d
dt
φ
∣∣∣∣∣∣
L2
||φ||H1

≥ d

dt
||∇refφ||2L2 −

1

2

∣∣∣∣∣∣ d
dt
φ
∣∣∣∣∣∣2
L2
− C(E, ||A||C1)||φ||2H1 ,

Where the last inequality was obtained by Young’s inequality with ε =
1

C(E,||A||C1 ) . Putting this all together, we find

∣∣∣∣∣∣( d
dt

+ ∆D

)
φ
∣∣∣∣∣∣2
L2,2
≥ C(E)−1||φ||2H2 +

1

2

∣∣∣∣∣∣ d
dt
φ
∣∣∣∣∣∣2
L2

+
d

dt
||∇refφ||2L2 − C(E, ||A||C1)||φ||2H1

Then by integrating in time, we obtain

||φ||2V ≤ C(E)

(∣∣∣∣∣∣( d
dt

+ ∆D

)
φ
∣∣∣∣∣∣2
L2,2

+ ||φ(0)||2H1

)
+ C(E, ||A||C1)||φ||2L2(H1).

Finally, we use (5.5) to estimate

||φ(t)||2L2(H1) ≤ T ||φ||
2
L∞(H1) ≤ T ||φ(0)||2H1 + 2T ||φ||2V .

If we choose T = 1
4(1+C(E,||A||1C))

, then the lemma follows.

The linear estimates above don’t necessarily hold for borderline case
A ∈ H1; however, under certain circumstances Lp-estimates are still avail-
able. To obtain these estimates we first observe that for any φ, ψ ∈ Ωi(adE),
and since we are assuming D is a metric connection, we have

d〈φ, ψ〉 = 〈Dφ,ψ〉+ 〈φ,Dψ〉
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In particular, for sections φ ∈ Ω0(ad E), where ∇φ = Dφ, we obtain Kato’s
inequality

|d|φ|| ≤ |Dφ|.

We can combine this with the Sobolev embedding H1 ↪→ L4 valid in 4
dimensions to obtain

||φ||L4 ≤ C(||Dφ||L2 + ||φ||L2)

for any φ ∈ Ω0(ad E) with a uniform constant C = C(E) independent of
D.

To obtain similar estimates for forms of degree i ≥ 1 we need to consider
the exterior covariant derivatives and the covariant derivatives. Note that
on account of the Weitzenböck formula this introduces an extra curvature
term, but these can be accounted for by constants so long as the curvature
doesn’t concentrate. Towards these ends we have the following:

Lemma 5.3.3. Let D = Dref + A, A ∈ H1, with curvature F = FD ∈ L2. There
exist constants C3 = C3(E), δ = δ(E) > 0 such that for any φ ∈ Ωi(ad E), any
0 < R < 1, there holds

||φ||2L4 + ||∇φ||2L2 ≤ C3

(
||Dφ||2L2 + ||D∗φ||2L2

)
+ C3R

−2||φ||2L2 ,

provided

sup
x0

∫
BR(x0)

|FD|2 ∗ (1) ≤ δ.

Proof. By the Weitzenböck identity, equation (2.5), and Sobolev’s embed-
ding theorem, we find

C(E)−1||φ||2L4 − ||φ||2L2 ≤ ||∇φ||2L2 = (∇∗∇φ, φ) = (∆Dφ, φ)

+ (FD#φ, φ) + (Rm#φ, φ)

= ||Dφ||2L2 + ||D∗φ||2L2 + (FD#φ, φ) + (Rm#φ, φ).

Now, by Hölder’s inequality, we have

(Rm#φ, φ) ≤ C||φ|||2L2

To estimate the term (F#φ, φ) we use the Gagliardo-Nirenberg-Sobolev in-
equality on a suitable cover of M by balls BR(xi). To do this we adopt a
cutoff function argument. Let ϕi ∈ C∞0 (BR(xi)) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1
on BR

2
(xi) and |∇ϕi| ≤ CR−1, where xi ∈ M . We also utilise the Sobolev

embedding H1 ↪→ L4 valid in dimension 4.

(FD#φ, φ) ≤ C
∑
i

||FD||L2(BR(xi))||ϕiφ||
2
L4(BR(xi))

≤ Cδ
∑
i

(
||∇φ||2L2(BR(xi))

+R−2||φ||2L2(BR(xi))

)
,
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whereC = C(E). SinceM is compact, there exists a constantR0 = R0(M) >
0 and a number L (independent of M ) such that for 0 < R ≤ R0 < 1 there
is a cover (BR(xi)) such that at most L distinct balls of this cover overlap at
any point of M .

Thus, for R ≤ R0 and with this choice of (BR(xi)) the above estimate
yields

(FD#φ, φ) ≤ CLδ
(
||∇φ||2L2 +R−2||φ||2L2

)
.

If we choose δ ≤ 1
2CL , then we see that

||∇φ||2L2 ≤
1

2

(
C3

(
||Dφ||2L2 + ||D∗φ||2L2

)
+ C3R

−2||φ||2L2

)
,

which implies

||φ||2L4 ≤
1

2

(
C3

(
||Dφ||2L2 + ||D∗φ||2L2

)
+ C3R

−2||φ||2L2

)
,

which yields the result.

5.3.1 Evolution of Curvature and Energy Inequality

If we consider the evolution of curvature as D = Dref + A(t), then for σ ∈
Ω0(ad E) we find

d

dt
FD(σ) = lim

ε→0

FD+ε d
dt
D(σ)− FD(σ)

ε

= lim
ε→0

(D + ε ddtD)(Dσ + ε ddtDσ)−D2(σ)

ε

=
( d
dt
A(t)

)
(Dσ) +D

( d
dt

(A(t)
)
σ − d

dt
A(t)(Dσ)

= D
( d
dt
D
)

(σ).

Therefore, since we are evolving the curvature along the lines of steepest
descent for the functional, we find that

d

dt
FD(t) = −DD∗FD(t). (5.6)

This equation is non-parabolic, and the culprit is again the infinite dimen-
sional gauge group. In view of the first Bianchi identity though, we find
that F satisfies the evolution equation(

d

dt
+ ∆D

)
FD = 0. (5.7)
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By taking the inner product of (5.7) withFD and recalling the second Bianchi
identity, we obtain the identity

0 =
1

2

d

dt
||FD||2L2 + (∆DFD, FD) =

d

dt
YM(D) + ||D∗FD||2L2 .

In particular, by integrating in time we find that any classical solution of
the YMHF problem must satisfy for any T > 0

YM(D(T )) +

∫ T

0
||D∗FD||2L2dt ≤ YM(D0). (5.8)

Moreover, if we multiply FD by FDϕ
2, where ϕ is a cutoff function with

support in B2R(x0) such that ϕ ≡ 1 on BR(x0) and |∇ϕ| ≤ CR−1, as before,
we find

0 =
1

2

d

dt

∫
B2R(x0)

|FD|2ϕ2 ∗ (1) + (∆FD, FDϕ
2)

=
1

2

d

dt

∫
B2R(x0)

|FD|2ϕ2 ∗ (1) + (DD∗FD, FDϕ
2)

=
1

2

d

dt

∫
B2R(x0)

|FD|2ϕ2 ∗ (1) + (D∗FD, D
∗FDϕ

2) + 2(D∗FD, FDϕD
∗ϕ).

Then since (·, ·) is the L2 inner product introduced in Section 2.7, we have
by the Cauchy-Schwarz and Young’s inequalities that

2(D∗FD, FDϕD
∗ϕ) ≤

∫
B2R(x0)

|D∗FD|2ϕ2 ∗ (1) +

∫
B2R(x0)

|FD|2|∇ϕ|2 ∗ (1).

If we re-arrange what we currently have, we write

1

2

d

dt

∫
B2R(x0)

|FD|2ϕ2 ∗ (1) +

∫
B2R(x0)

|D∗FD|2ϕ2 ∗ (1) = −2(D∗FD, FDϕD
∗ϕ)

≤
∫
B2R(x0)

|D∗FD|2ϕ2 ∗ (1) +

∫
B2R(x0)

|FD|2|∇ϕ|2 ∗ (1),

which, if we then integrate in time we find that∫
BR(x0)

|FD(t)|2 ∗ (1) ≤
∫
B2R(x0)

|FD0 |2 ∗ (1) + CtR−2YM(D0),

since YM(D(t)) ≤ YM(D0) for all t ≥ 0. Note that YM(D0) has support
in the ball B2R(x0). Therefore, for any 0 ≤ t ≤ T , where T is the maximum
existence time, we have

sup
0≤t≤T

∫
BR(x)

|FD(t)|2 ∗ (1) ≤
∫
B2R(x0)

|FD0 |2 ∗ (1) + CTR−2YM(D0). (5.9)

Next, observe that by Hölder’s and Young’s inequalities L∞,2∩L2,4 ↪→ L3,3

with

||φ||2L3,3 ≤ ||φ||
2
3

L∞,2
||φ||

4
3

L2,4 ≤
1

3
||φ||2L∞,2 +

2

3
||φ||2L2,4 (5.10)
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for any φ. Combining this with Lemma 5.3.3, equation (5.8) and the first
Bianchi identity, we obtain :

Lemma 5.3.4. Let δ = δ(E) > 0 be as in Lemma 5.3.3 and supposeD is a classical
solution of YMHF on (0, T ) with

sup
x0∈M
0<t<t̄

∫
BR(x0)

|FD(t)|2 ∗ (1) < δ (5.11)

for some 0 < R ≤ 1. Then F ∈ L3,3 with

||FD||2L3,3 ≤ C4(1 + TR−2)YM(D0),

where C4 = C(E).

Proof. By equation (5.10) we have

||FD||2L3,3 ≤
1

3
||FD||L∞,2 +

2

3
||FD||2L2,4 .

Recall then that by equation (5.9) we have

||FD||L∞,2 ≤ 2YM(D0) + CTR−2YM(D0),

and by integrating the result from Lemma 5.3.3 in time, and noting that by
equation (5.8)

||FD||2L2,4 ≤ YM(D0) + CTR−2YM(D0),

and putting this together yields the result.

As a consequence of the Weitzenböck identity and equation (5.7) we
then have the following lemma:

Lemma 5.3.5. Under the assumptions of Lemma 5.3.4 there holds

D∗FD ∈ L2
loc

(
(0, T ];L4

(
Ω1(ad E)

))
,

d

dt
FD ∈ L2

loc

(
(0, T ];L2

(
Ω2(ad E)

))
.

Proof. By evaluating
((

d
dt + ∆D

)
FD,

(
d
dt + ∆D

)
FD

)
= 0 and recalling the

first Bianchi identity, we have at any time t > 0 that∣∣∣∣∣∣ d
dt
FD

∣∣∣∣∣∣2
L2

+ ||DD∗FD||2L2 = −2
(
DD∗FD,

d

dt
FD

)
=
∣∣∣∣∣∣ d
dt
FD

∣∣∣∣∣∣2
L2

+ ||DD∗FD||2L2

= −2
(
DD∗FD,

d

dt
FD

)
= −2

(
D∗FD,

d

dt
(D∗FD)

)
+ 2
(
D∗FD,

( d
dt
D
)

#FD

)
≤ − d

dt
||D∗FD||2L2 + 2||FD||L3 ||D∗FD||2L3 ,

where the last inequality holds by the fact that d
dtD = −D∗FD and gener-

alised Hölder’s inequality. Since we are under the assumption that (5.11) is
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true we have that Lemma 5.3.3 applies. From this and the second Bianchi
identity there holds

||D∗FD||2L4 ≤ C||DD∗FD||2L2 + CR−2||D∗FD||2L2 ,

for any t. We then have the energy inequality∣∣∣∣∣∣ d
dt
FD

∣∣∣∣∣∣2
L2

+ ||D∗FD||2L4 +
d

dt
||D∗FD||2L2

≤ C
(

2||FD||L3 ||D∗FD||2L3 +R−2|D∗FD||2L2

)
,

which we may then integrate in time on any interval [t0, t1] ⊂ [0, T ] we
obtain∣∣∣∣∣∣ d
dt
FD

∣∣∣∣∣∣2
L2,2

+ ||D∗FD(t1)||2L2 + ||D∗FD||2L2,4

≤ C||FD||L3,3 ||D∗FD||2L3,3 + ||D∗FD(t0)||2L2 + CR−2||D∗FD||2L2,2

≤ C5||FD||L3,3

(
||D∗FD||2L∞,2 + ||D∗FD||2L2,4

)
+ ||D∗FD(t0)||2L2 + C5(t1 − t0)R−2||D∗FD||2L∞,2 ,

where we also used equation (5.10). To show that the lemma is true on
the interval [t0, t1] we must show that the right hand side of the above in-
equality is finite. We are not able to integrate over the entire time domain
because we will need to use the fact that we can make t1 and t0 close enough
together achieve a smallness estimate.

By the mean value theorem, given τ > 0 we can find t0 ∈ [0, τ ] such that

||D∗FD(t0)||2L2 ≤ 2τ−1

∫ τ

0
||D∗FD(t)||2L2 dt ≤ 2τ−1YM(D0).

Moreover, by the absolute continuity of the Lebesgue integral, i.e. that if

t1 − t2 = h then lim
h→0

∫ t2

t1

f(x)dx = 0, and Lemma 5.3.4, we can achieve that

||FD||3L3,3 =
(∫ t1

t0

||FD(t)||3L3 dt
)
≤ 1

4C5

uniformly in t0 and t1, if the difference h = t1 − t0 is sufficiently small. We
may assume that h ≤ R2

4C5
.

Finally, for any such pair t0 < t1 < t0 + h we may choose t′1 ∈ [t0, t1]
such that

||D∗FD(t′1)||2L2 ≥
2

3
||D∗FD||2L∞,2 ,

since we may just choose t′1 such that sup
t0<t<t1

||D∗FD(t)||2L2 = ||D∗FD(t′1)||2L2 .

Hence we obtain the assertion of the lemma on [t0, t1]. If we cover the in-
terval [τ, T ] with finitely many intervals of length h then the lemma fol-
lows.
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Lemma 5.3.6. Under the assumptions of Lemma 5.3.4 there holds D = Dref +A,

where A extends to A ∈ Cloc

(
(0, T ];H1

(
Ω1(ad E)

))
.

Proof. By Lemma 5.3.5 and since d
dtD = −D∗FD, we have that

d

dt
A ∈ L2

loc
(
(0, T ];L4

)
,

For n = 1 we have the Sobolev embedding H1 ↪→ C0, we see that A ∈
C0
(
(0, T ];L4

)
.

Thus, since FD = FDref +DrefA+A∧A, where D = Dref +A, we see that

d

dt
(DrefA) =

d

dt
FD +

d

dt
A#A ∈ L2

loc
(
(0, T ];L2

)
,

which implies

DrefA ∈ C0
(
(0, T ];L2

)
.

Moreover, by the second Bianchi identity and Lemma 5.3.5, we have

d

dt
(D∗refA) = D∗ref

( d
dt
D
)

= D∗refD
∗FD = A#D∗FD ∈ L2

loc
(
(0, T ];L2

)
,

which yields that

D∗refA ∈ C
0
(
(0, T ];L2

)
and therefore also the claimed result.

5.4 Local Existence

Although the heat flow method of proof of existence of Yang–Mills connec-
tions was suggested by Atiyah and Bott, it was Atiyah’s student, Donald-
son, in his paper [14] who proved global existence for the Yang–Mills gra-
dient flow for a complex vector bundle. Although such a result was a major
breakthrough and has been much celebrated, the hypotheses of this result
were very strong, in that all of the gauge transforms and connection forms
were assumed to be smooth. This evolution also occurs over a Kähler man-
ifold which introduces extra structure in addition to that of a Riemannian
manifold, namely a complex and symplectic structure. Nevertheless, before
reviewing Struwe’s method for heat flow over a real Riemannian manifold
of dimension 4 with the weakest possible regularity assumptions on the
space of connections and the gauge group, it is instructive to review Don-
aldson’s approach for the smooth case. We will not exactly consider Don-
aldson’s approach, but rather we will consider the same setting as ours, but
the case where all maps are smooth. In actual fact, they need not even be
smooth for this method to work, but only in the ‘safe’ Sobolev range where
multiplication and inversion of elements are smooth.
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First, let D = D(t) be a solution of d
dtD = −D∗FD and S = S(t) a family

of gauge transformations depending smoothly on t. Then D̄ = S∗(D).

Then, for σ ∈ Ω0(E),( d
dt
D̄
)
σ =

(
d

dt

(
S−1 ◦D ◦ S

))
σ

= −
(
S−1dS

dt
S−1 ◦D ◦ S

)
σ +

(
S−1 ◦ d

dt
D ◦ S

)
σ +

(
S−1 ◦D ◦ dS

dt

)
σ

= −sD̄σ − D̄∗F̄ σ + D̄(sσ)

= (−D̄∗F̄ + D̄s)σ,

where s = S−1dS

dt
∈ Ω0(ad E) and F̄ = FD̄. Therefore

d

dt
D̄ = −D̄∗F̄ + D̄s. (5.12)

5.4.1 Donaldson’s Ansatz

In the smooth case it is possible to make the ansatz that s = S−1dS

dt
is of

a particular form to produce unique gauge transformations to normalise
the gauge equivalent flow. Since we are in the Sobolev range such that the
gauge group action is smooth, this will work and we will be able to find a
solution to the flow by a gauge transformation. In what is now called the
Donaldson–DeTurk trick, Donaldson makes the ansatz that D̄ = D0 + a,
where he determines a by solving the initial value problem{

d

dt
D̄ =

d

dt
a = −D̄∗F̄ + D̄(−D̄∗a)

a(0) = 0.
(5.13)

Choosing a such that it is the unique solution of

S−1dS

dt
= −D̄∗a = s,

a(0) = 0

actually uniquely determines a gauge transformation such that ã = (S−1)∗a
and D̃ = (S−1)∗D̄ such that{

d

dt
D̃ + D̃∗F̃ = 0,

ã(0) = 0,
(5.14)

thus solving the YMHF. The proof that this is true is rather long and is not
relevant to our argument, so we refer to Lemma 20.3 of [18] or Chapter
4 of [26], among other places, for an exposition of Donaldson’s method.
The main point to note though, is that such a method fails for the class of
connectionA ∈ H1. This is because solving equation 5.13 will only generate
a solution a ∈ H1, which leads to s ∈ L2 and therefore S defined as the
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solution of {
dS

dt
= S ◦ s

S(0) = id,
(5.15)

will only be bounded and measurable for x ∈ M , and this is not enough
to interpret D̃ = (S−1)∗D̄ as a weak solution of the YMHF. We may over-
come such a difficulty, however, if we do not attempt to fix the background
connection, and instead evolve it smoothly. The effect of this will be two-
fold: Firstly, evolving the background connection will allow us to obtain
one derivative more regularity on s, i.e. s ∈ H1. Secondly, by evolving
the background connection we can view a solution of the YMHF as a small
perturbation of Dbg. Note that by considering the solution as a small per-
turbation of Dbg, we have that D̄ = Dbg + a, where ||a||L∞,4 ≤ ε.

Alternatively, it is also possible to fix a smooth background connection
and impose the condition ||a(0)||L∞,4 ≤ ε, which is the method adopted by
Feehan in Chapter 19 of his exposition of the Yang–Mills heat flow [18]. Ei-
ther way, we consider the solution of the YMHF to be a small perturbation
of Dbg, although one must still evolve the background connection and ap-
ply Struwe’s argument in Section 5.5. Due to this, we believe it simpler to
follow Struwe’s original proof and evolve the background connection for
regularity reasons as well.

5.4.2 Choice of Background Connection

Let D0 ∈ H1 be given and fix a smooth D1 ∈ Ω1(ad E) and express D0 =
D1 +A0 in terms of this connection. To determine the evolving background
connection, solve the initial value problem

d

dt
Abg + ∆1Abg = 0

Abg(0) = A0,
(5.16)

where ∆1 = D∗1D1 +D1D
∗
1 is the Laplace operator for D1.

The IVP (5.16) has a unique, global solution Abg since it is the canon-
ical form of the heat equation. Moreover, by the smoothing effect of the
homogeneous heat equation, see, for example, Chapter 2.3 of [17], we have
that Abg is smooth for t > 0. By Lemma 5.3.2 we have Abg ∈ L2(H2) ∩
C0(H1) ∩H1(L2) with estimates depending on D1 and A0 (recall that V ↪→
C0
(

[0, T ];H1(Ωi
(
ad E)

))
). In particular, by Lemma 5.3.2 since Abg solves

the heat equation we have

||Abg||V ≤ C||A0||H1 .

Moreover, by the embedding V ↪→ C0
(

[0, T ];H1(Ωi
(
ad E)

))
we have that

on the interval [0, T1] there holds

||Abg||L∞(H1) ≤ C||A0||H1 . (5.17)
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Moreover, ||A0||H1 may be chosen as small as we like. Finally, we let
Dbg = D1 +Abg to define our evolving background connection.

5.4.3 Local Existence for the Gauge-Equivalent Flow

We continue to follow Struwe’s Ansatz where he sets

D̄ = Dbg + a,

a(0) = 0,

where D̄ solves (5.12) with s = −D̄∗a, i.e.

d

dt
D̄ + D̄∗F̄ + D̄(D̄∗a) = 0, (5.18)

where F̄ = FD̄. The method, then, is to write D̄ = Dbg +a, where ||a||L∞,4 ≤
ε, substitute this into equation (5.18) and then determine if there exists an a
which solves this equation. Evolving the background connection is crucial
to the argument, since it is this which gives us the fact that ||a||L∞,4 ≤ ε.
Morevoer, the Sobolev embedding for n = 4, H1 ↪→ L4, gives us that
||a||L∞(H1) ≤ ε, and the following argument would break down if this
weren’t the case.

By expanding

F̄ = Fbg + D̄a+ a#a,

we get

d

dt
a+ ∆̄a = −D̄∗(Fbg + a#a)− d

dt
Dbg

= −D∗bgFbg −
d

dt
Abg + a#Fbg − D̄∗(a#a)

(5.19)

for a, where ∆̄ is the laplace operator for D̄ and Fbg = FDbg . Note that by
Lemma 5.3.5 we have

Fbg = FD1+Abg

= FD1 +D1Abg +Abg#Abg ∈ L2(H1) ∩ C0(L2)

D∗bgFbg = D∗1Fbg +Abg#Fbg ∈ L2,2

and are smooth for t > 0. Here and in the following we use Sobolev’s
embedding H1 ↪→ L4 and Hölder’s inequality.
Moreover, D̄∗(a#a) =

(
∇bga

)
#a+a#a#a. Therefore, we see that a satisfies

d

dt
a+ ∆̄a = f + a#Fbg +∇bga#a+ a#a#a,

where f = −D∗1Fbg +Abg#Fbg − d
dtAbg ∈ L2,2 and is smooth for t > 0.

Moreover, since

∆̄φ = ∆1φ+∇1A#φ+A#∇1φ+A#A#φ.
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where Ā = Abg + a and φ ∈ H2(Ωi(ad E)), we obtain

d

dt
a+ ∆1a = f+Fbg#a+Abg#∇1a+∇1Abg#a

+Abg#Abg#a+ a#∇1a+Abg#a#a+ a#a#a.
(5.20)

We can now estimate each term in this equation to show that we can use
the contraction mapping method to deduce the existence of a solution to
this equation, a ∈ VT . In fact, since a(0) = 0, by Lemma 5.3.2 we have

||a||L∞(H1) ≤ C||a||V ≤ C
∣∣∣∣∣∣( d

dt
+ ∆1

)
a
∣∣∣∣∣∣
L2,2

,

on any interval [0, T ], where 0 < T ≤ T1, C = C(E). We may estimate the
eight terms on the right of equation (5.20) as follows: By Hölder’s inequality
and the Sobolev embedding theorem,

||Fbg#a||L2,2 ≤ ||Fbg||L2,4 ||a||L∞,4 ≤ C||Fbg||L2(H1)||a||L∞(H1)

≤ C||Abg||L2(H2)||a||L∞(H1) ≤ ε||a||L∞(H1) ≤ ε||a||V ,

if 0 < T ≤ T (ε,D1, A0). Since f ∈ L2,2, we may make it arbitrarily small
by making the time interval small enough due to the absolute continuity of
the Lebesgue integral. We now estimate

||Abg#∇1a||L2,2 ≤ ||Abg||L∞,4 ||∇1a||L2,4

≤ C||A0||H1 ||a||L2(H2) ≤ ε||a||L2(H2) ≤ ε||a||V

If ||A0||H1,2 < ε
C , with C = C(E). We now estimate

||∇1Abg#a||L2,2 ≤ ||∇1Abg||L2,4 ||a||L∞,4
≤ C||Abg||L2(H1)||a||L∞(H1) ≤ ε||a||V ,

and

||Abg#Abg#a||L2,2 ≤ ||Abg#Abg||L2,4 ||a||L∞,4
≤ C||Abg#Abg||L2(H1)||a||L∞(H1)

≤ C||a||L∞(H1)

(
||Abg#Abg||L2,2 + ||∇1Abg#Abg||L2,2

)
≤ C||a||L∞(H1)

(
||Abg||L2,4 ||Abg||L∞,4 + ||∇1Abg||L2,4 ||Abg||L∞,4

)
≤ ε||a||V .

We now estimate

||a#∇1a||L2,2 ≤ ||a||L∞,4 ||∇1a||L2,4

≤ C||a||L∞(H1)||a||L2(H2) ≤ ε||a||V ,
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provided that ||a||L∞(H1) ≤ ε
C . Similarly, we estimate

||Abg#a#a||L2,2 ≤ ||Abg||L∞,4 ||a#a||L2,4 ≤ C||Abg||L∞(H1)||a#a||L2(H1)

≤ C||A0||H1

(
||∇refa#a||L2,2 + ||a||2L4,4

)
≤ C||A0||H1 ||a||L∞,4

(
||∇refa||L2,4 + ||a||L2,4

)
≤ C||A0||H1 ||a||L∞(H1)||a||L2(H2) ≤ ε||a||V ,

provided that ||a||L∞(H1) ≤ ε
C . Lastly, we estimate

||a#a#a||L2,2 ≤ C||a||2L∞(H1)||a||V ≤ ε||a||V ,

also given ||a||L∞(H1) ≤ ε
C .

It therefore suffices to choose D1 such that ||A0||H1 < ε for some ε > 0
depending only on the bundle,E. We can then choose T = T (ε,D1, A0) > 0
to obtain a priori bounds of a ∈ L2(H2) ∩ C0(H1) ∩H1(L2). Explicitly, we
have shown that ∣∣∣∣∣∣( d

dt
+ ∆1

)
a
∣∣∣∣∣∣
L2,2
≤ ε||a||V ,

which is therefore a contraction mapping for ε < 1 (recall a(0) = 0). This
implies the existence of a ∈ V , and hence a ∈ L2(H2) ∩ C0(H1) ∩H1(L2).
Moreover a is smooth in space for t > 0 by the smoothing property of so-
lutions of parabolic flows. Such a claim follows from general theory, rather
than a particular theorem; however, a review of the relevant theory can be
found in Chapter 4 of [18].

5.4.4 Local Existence for the Yang–Mills Flow

Now that we have proven the existence of a solution to the gauge equiva-
lent flow (5.12), we must construct gauge transformations which transform
this into a solution of the YMHF equation. Analogously to Donaldson’s
Ansatz, we aim to obtain a local solution to the YMHF given a solution to
(5.12). This yields the gauge transformation relating D and D̄, where D̄ is
the solution to the gauge-equivalent flow, also constructed in Section 5.4.3.

Recall that by evolving the background connection we have that

s = −D̄∗a ∈ L2(H1)

and is smooth for t > 0. Let {tk}n∈N be a sequence such that 0 < tk ≤ T ,
tk ↘ 0 as k →∞. Solve {

dS

dt
= S ◦ s

S(tk) = id,
(5.21)

on [tk, T ) to obtain a sequence Sk = Sk(t) ∈ G of smooth gauge transforma-
tions depending smoothly on t for 0 < t ≤ T . By this smooth dependence
we have Sk = S−1

` (tk) ◦ S` for ` > k. Then let

Dk = (S−1
k )∗D̄ = S`(tk)

∗D`
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be the corresponding connections. For each k, Dk = Dk(t) is smooth in
space for 0 < t ≤ T and is a classical solution of the YMHF evolution
equation. Also note that since D̄ is continuous in time and Sk(tk) = id, we
get

Dk(tk) = D̄(tk)→ D0 in H1 (5.22)

as k → ∞. This tells us that the Dk(tk) converges ‘diagonally’, and we
would like to show that lim

t→0
Dk(t) = Dk(0), and that lim

k→∞
Dk(t) = D0(t),

which means that both limits exist independently of the other. This is not
guaranteed by the diagonal limit existing, although by the energy inequal-
ity (5.8) and invariance of the energy under gauge transformations we have
uniform bounds ∣∣∣∣∣

∣∣∣∣∣ ddtDk

∣∣∣∣∣
∣∣∣∣∣
2

L2,2

= ||D∗kFDk ||
2
L2,2 ≤ YM(D0),

sup
t
YM

(
Dk(t)

)
≤ YM(D0)

(5.23)

for any k. This says that Dk is differentiable in time and is bounded uni-
formly for any time. Moreover, since time is only one dimensional, the
Sobolev embedding theorem gives us thatDk is actually continuous in time.
Together, this implies

Dk(0) = lim
t↘0

Dk(t) in L2

exists. Note that we only have the limit in L2 since we only have an L2

bound. We would now like to show that

Dk(0)→ D0 in H1

as k → ∞, although it turns out that this is too much to ask since we only
have an L2 bound on Dk. This guarantees the existence of a weakly conver-
gence subsequence by the Banach-Alaoglu theorem, since L2 is reflexive.
This, together with the strong diagonal limit in H1 guarantees

Dk(0)→ D0 in L2

as k →∞.

Similarly, by (5.21) we have∣∣∣∣∣∣ d
dt
S`

∣∣∣∣∣∣2
L2,4
≤ ||s||2L2,4 ≤ C||s||2L2(H1),

since S is unitary. Therefore S is continuous in time and bounded for any t,
which guarantees

S`(0) = lim
t↘0

S`(t) ∈ L4

exists for any `.
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Fix some ` = ˆ̀ and let Ŝ = Sˆ̀, D̂ = Dˆ̀, Ŝ0 = Ŝ(0), D̂0 = D̂(0), Ŝk =

Ŝ(tk) ∈ G . In this notation, the above conclusions are expressed as

Ŝk → Ŝ0 in L4,

Dk(0) = Ŝ∗k(D̂0)→ D0 in L2.

Moreover, if we let D̂0 = D1 + Â0, D0 = D1 +A0, Â0, A0 ∈ L2, we see that

Ŝ∗k(D̂0)−D0 = Ŝ∗k(D1)−D1 + Ŝ−1
k Â0Ŝk −A0

= Ŝ−1
k ◦ (D1Ŝk) + Ŝ−1

k Â0Ŝk −A0 → 0 in L2

when one considers the action on sections. Thus, also

lim
k→∞

D1Ŝk = lim
k→∞

(Â0Ŝk − ŜkA0) ∈ L2 (5.24)

exists and necessarily coincides with the distributional limit D1Ŝ0 by the
uniqueness of limits; that is,

Ŝk → Ŝ0 in H1.

This then implies that Dk = Ŝ∗k(D̂) converges uniformly with respect to t to
some

D = Ŝ∗0(D̂) ∈ C0(L2)

with D(0) = D0 and d
dtD ∈ L

2,2 by (5.23). D ∈ C0 in time since D ∈ H1 in
time, and D ∈ L2 since Ŝ0 ∈ H1 in space, and D will have one derivative
less than Ŝ0. This follows since both terms converge in C0 in time and Ŝk
converges inH1 and D̂ is in L2, so their product is also in L2 by the Sobolev
multiplication theorems.
Similarly,

FDk = S∗k
(
F (D̂)

)
converges in L2, locally uniformly, in that it converges uniformly away
from t = 0, for t > 0. Since Dk → D in C0(L2), we moreover have con-
vergence

FDk → FD

in the distributional sense. Together, these results imply

FDk → FD in C0((0, T ];L2)

by the uniqueness of limits. In the same way, from (5.23) and since D ∈
C0([0, T ];L2), we have by the Banach Alaoglu theorem that (possibly pass-
ing to a subsequence)

FD(t) ⇀ FD0
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weakly in L2 as t→ 0. Finally, since by (5.23) also

lim sup
t→0

||FD(t)||2L2 ≤ ||FD0 ||2L2 ,

we obtain strong convergence inL2 as t→ 0; that is FD ∈ C0([0, T ];L2)- see,
for example, Proposition 3.32 of [10]. Hence D is in fact a weak solution to
the Yang–Mills evolution problem YMHF. Moreover, D satisfies (5.8). This
proves the first claim of Theorem 5.2.3.

5.5 Gauge Normalisation

For the proof of uniqueness we must also consider the gauge equivalent
flow, (5.12), of the YMHF. This is necessary since considering solutions
of equation (5.12) will yield gauge-equivalent solutions to the YMHF, and
these are equally valid. Note however, that when one finds solutions equa-
tion (5.15) for s = −D∗a, it is necessary that the operator D : Ω0(ad E) →
Ω1(ad E) be invertible so that the equation (5.21) has a unique solution. If
D weren’t invertible, then it is possible to have multiple s = −D∗a, which
leads to non-unique solutions of S. Amongst other places, we have by [19]
Theorem 3.1, that the operator D : Ω0(ad E) → Ω1(ad E) being injective is
equivalent to the connection D being irreducible.

5.5.1 Irreducible Connections

Given a connection D ∈ Ω1(ad E) on E the isotropy subgroup of D,

Γ = Γ(D) = {S ∈ G : S∗(D) = D},

is the group of all gauge transformations which fix the connection. It is triv-
ial to check that this is a subgroup, and if one considers the one parameter
variation of an element in S, it is clear that the Lie algebra of this subgroup
is

γ = {s ∈ Ω0(ad E) : Ds = 0},

i.e., the kernel of the exterior differential operator D. A connection is irre-
ducible if and only if the isotropy subgroup contains only elements in the
centre of the G, although for a proof we refer to by Lemma 4.2.8 of [15],
although a proof appears in various other places.

Although to do an analysis of the flow over arbitrary base manifolds
would require the analysis of reducible connections, we will follow Struwe
and restrict our analysis to only be for connections which are irreducible.
This does not constitute a big loss of generality, however, since ifG = SU(2)
and D is reducible, then either E is trivial and D = d is the trivial connec-

tion or E splits into a direct sum of line bundles E =

n⊕
i=1

Ei, where the

connection D splits into an irreducible connection on each component, see,
for example, [15]. In the first case we have YM(D) = 0, and so there is no
need for a heat flow analysis, and in the second case the analysis boils down
to the case where we have an irreducible connection. It is then fortuitous



5.5. Gauge Normalisation 103

that the case where G = SU(2) is the case which interests us the most, and
so we will only consider irreducible connections for the rest of this thesis.
The centre of SU(2) is trivial, and so D is irreducibile iff

ker(D) ∩ Ω0(ad E) = {0}.

For D ∈ H1 this requirement on irreducibility is equivalent to the algebraic
condition

||s||H1 ≤ C||Ds||L2 (5.25)

for s ∈ H1
(
Ω0(ad E)

)
with C = C(D). This constant can be chosen locally

uniformly as follows.

Lemma 5.5.1. Suppose D0 satisfies (5.25) with C0 = C(D0), D0 ∈ H1. There
exists an H1 neighbourhood V of D0 and a constant C > 0 such that any D ∈ V
is irreducible and there holds

||s||H1 ≤ C||Ds||L2

uniformly for s ∈ H1
(
Ω0(ad E)

)
.

Proof. Let us suppose by contradiction that Ak ∈ H1
(
Ω1(ad E)

)
, sk ∈

H1
(
Ω0(ad E)

)
with Ak → 0 in H1 as k → ∞, ||sk||H1 = 1 for all k and

that we have

||Dksk||L2 = ||(D0 +Ak)sk||L2 → 0.

as k → ∞. Then by Hölder’s inequality and the Sobolev embedding theo-
rem we have

C−1
0 = C−1

0 ||sk||H1 ≤ ||D0sk||L2 ≤ ||Dksk||L2 + ||Ak#sk||L2

≤ ||Dksk||L2 + ||Ak||L4 ||sk||L4

≤ ||Dksk||L2 +K||Ak||H1 ||sk||L4 → 0

as k → ∞, and so we obtain a contradiction since we assumed that C0 was
a uniform constant.

5.5.2 Gauge Fixing

Since it is equivalent to consider the gauge-equivalent flow to minimise
the Yang–Mills energy, it would be logical to find a gauge which optimises
the regularity of the solution to the gauge equivalent flow, equation (5.12).
Namely, we want to find a gauge which forces the flow to be parabolic,
and, hopefully unsurprisingly, the heat flow is parabolic if and only if the
Coulomb gauge condition holds. Namely, we would like to show the exis-
tence of local Coulomb gauges which depend smoothly on the connection.
Let D0 ∈ H1 be irreducible in the sense that it satisfies (5.25) and define
Dbg(t) = D1 + Abg(t) for 0 ≤ t ≤ T be a family of background connections
such that Dbg(0) = D0 = D1 + A0 and Abg is smooth in space for t > 0
and Abg ∈ L2(H2)∩H1(L2), as determined by (5.16). Let H1(G) denote the
H1-closure of G.
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Proposition 5.5.2. Let D be a weak solution of YMHF on [0, T ) as in Theorem
5.2.3 (i). There exists T0 > 0 and a family of gauge transformations

S = S(t) ∈ C0
(
[0, T0];H1(G))

)
with

s = S−1 ◦ d
dt
S ∈ L2(H1)

such that

D̄ = S∗(D) = Dbg + ā

satisfies ā ∈ L∞(H1,2) ∩H1(L2), ā(t)→ 0 in H1 as t→ 0, and D̄∗ā = 0.

Proof. In a method analogous to constructing the solution of the gauge
equivalent flow, we first consider the smooth case. We then construct se-
quences of smooth functions such that each term can be treated by the
smooth case and then take the limit.

The
(i) Consider first the case that D0, Dbg and D are smooth. For simplicity,

let

D = Dbg + a =: Da, D̄ = Dbg + ā =: Dā

and to denote the corresponding curvatures by

FDa =: Fa, FDā = Fā.

Following Uhlenbeck’s method of gauge constructionin in Chapter 3, we
want to apply the implicit function theorem to be able to find a Coulomb
gauge representative of the connection. For this, we require that p > 2 so
that this map is smooth. For 2 < p < 4 and a fixed t ≥ 0 we introduce the
map

L : W 1,p
(
Ω1(ad E)

)
×W 2,p(G)→ Lp

(
Ω0(ad E)

)
L(a,S) = D∗āā,

where by an abuse of notation we let

ā = ā(a, S) = S∗(Da)−Dbg.

Recall that for p > 2 we have thatW 2,p(G) is a Banach manifold as discussed
in section 2.10. Moreover, the linearisation of this map about S(0) = id is
given by

lā(ψ) :=

∣∣∣∣∣∂L∂S
∣∣∣∣∣
(a,S(0))

(ψ) =
d

dt
(e−ψtDae

ψt)∗(e−ψtDae
ψt −Dbg)|t=0

= D∗āDāψ +Dāψ#ā,

where ψ ∈W 2,p
(
Ω1(ad E)

)
. This linearisation

lā : W 1,p
(
Ω1(ad E)

)
→ Lp

(
Ω0(ad E)

)
is injective for ||ā||L4 small enough.
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To see this, multiply lā with ψ to find that(
lā(ψ), ψ

)
= ||Dāψ||2L2 + (Dāψ#ā, ψ) ≥ ||Dāψ||2L2 − ||Dāψ||L2 ||ā||L4 ||ψ||L4

≥ ||Dāψ||2L2 − C||Dāψ||L2 ||ā||L4 ||ψ||H1

≥ ||Dāψ||2L2 − C||Dāψ||2L2 ||ā||L4 ≥ 0

for ||ā||L4 sufficiently small where C = C(M,D) depends on the Sobolev
constant and the uniform constant as determined by Lemma 5.5.1. There-
fore the operator lā is invertible if t ≥ 0 and ||ā||L4 is sufficiently small.
It follows by the implicit function theorem that there exists T0 > 0 and
S = S(t) ∈ C1

(
[0, T0];W 2,p(G)

)
such that S(0) = id and

L(a(t), S(t)) = 0;

that is, S∗(Da) = Dā is of class C1(W 1,p) and satisfies D∗āā = 0.

(ii) Since the above construction is only for smooth connections and the
connection D in the hypothesis is in fact only a weak solution of the YMHF,
we adopt a method analogous to the one we used to construct a weak so-
lution of the YMHF. Namely, we construct sequences of smooth solutions
to the YMHF and find a gauge transformation to put each of these terms in
Coulomb gauge and then take a limit, as follows: Firstly, let

Dk = Ŝ∗k(D̂) = Dbg + ak,

on [tk, T ), where D̂ is the same as in the construction of the weak solution
to the YMHF. The existence of such a sequence is guaranteed by the con-
struction of the weak solution to the YMHF in the local existence Section
5.4. As before, we have the initial condition

Dk(tk) = Dk0 → D0 in H1

for some sequence tk → 0 as k → ∞. Although such notation seems some-
what circuitous, it is necessary for our argument. We can understand Dk0

to mean the initial connection for t ∈ (tk, Tk]. Note that∣∣∣ d
dt
Dk

∣∣∣ =
∣∣∣ d
dt
D
∣∣∣ ∈ L2,2,

by construction (recall equation (5.23)). We must also choose corresponding
smooth background connections Dbg,k = D1 + Abg,k, where Abg,k solves
(5.16) with initial data

Abg,k(tk) = Abg(tk) + ak(tk).

Note that by the above definitions we have

Dk(tk) = Dbg,k(tk). (5.26)

Also note that by Lemma (5.5.1) the data Dk0 satisfy condition (5.25) with a
uniform constant C. Moreover, Abg,k ∈ VT , and, given ε > 0, by a suitable
choice ofD1 and choosing a smaller time T > 0 if necessary, we can achieve
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that

εk(T ) :=

∣∣∣∣∣
∣∣∣∣∣ ddtDk

∣∣∣∣∣
∣∣∣∣∣
2

L2,2

+

∣∣∣∣∣
∣∣∣∣∣ ddtAbg,k

∣∣∣∣∣
∣∣∣∣∣
2

L2,2

+ ||Abg,k||2L∞(H1)

+ ||Abg,k||2L2(H2) + ||Fbg,k||2L2(H1) < ε,

uniformly in k, k ≥ k0(ε). This control comes from the fact that each term
except for ||Abg,k||2L∞(H1) can be made arbitrarily small by making the time
interval small enough, again by the absolute continuity of the Lebesgue in-
tegral. For ||Abg,k||2L∞(H1) this method is invalid, since decreasing the time
interval does not necessarily decrease the L∞ norm. Fortunately, by (5.17)
we may make ||Abg,k||2L∞(H1) as small as needed by making A0 as small as
needed.

Since (5.26) holds we may apply the construction used in part (i) to yield
a C1(in time)-family of smooth gauge transformations Sk = Sk(t) on some
interval [tk, Tk] for tk < Tk ≤ T , such that

D̄k = S∗k(Dk) = Dbg,k + āk

satisfies

D̄∗kāk = 0. (5.27)

Since we aim to apply the implicit function theorem argument to each term
in the sequence āk, for each k there exists a corresponding time, Tk, which is
the maximal time for which the implicit function theorem holds. Since we
apply this argument to every element in the sequence for k large enough,
the infimum of Tk over all k will characterise the maximum existence time
of the flow. Therefore this term Tk is crucial in our argument, and if it were
to be 0 then our argument would break down. The goal of the following
lemma is two-fold: Firstly, we need to establish the existence of a T0 > 0
such that Tk ≥ T0 for each k large enough. Secondly, we need to obtain
suitable a-priori bounds on the terms āk and Sk so that we may pass to the
limit k → ∞. Since the background connection is evolving we have that
||āk||L∞,4 ≤ ε, and this implies that there exists a corresponding Tk > 0 for
each k large enough. Unfortunately, this doesn’t yield the existence of a
T0 > 0 such that each Tk ≥ T0 for each k large enough, since simply taking
the infimum over all the Tk may in fact yield 0.

To be able to extend the definition of āk to [0, Tk], we let sk = S−1
k ◦

d
dtSk

and extend sk(t) = 0, āk(t) = 0, that is Sk(t) = id, Dbg,k(t) = Dk(t) = Dk0

for 0 ≤ t ≤ tk.

Lemma 5.5.3. There exists constants C = C(D0), T0 = T (D0) such that for any
0 < T ≤ T0 and sufficiently large k there holds∣∣∣∣∣∣ d

dt
āk

∣∣∣∣∣∣2
L2,2

+ ||āk||2L∞(H1) + ||sk||2L2(H1) ≤ Cεk(T )

Proof. The proof requires several steps. Since this argument applies to each
term of the sequence we will drop the reference k for ease of notation.
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Claim 5.5.4. There exist constants C = C(D0) > 0, T0 = T (D0) > 0, ε > 0
such that for sufficiently large k we have∣∣∣∣∣∣ d

dt
ā
∣∣∣∣∣∣2
L2,2

+ ||s||L2(H1) ≤ Cε(T )

for 0 < T ≤ T0, provided ||ā||L∞,4 ≤ ε.

Proof. Firstly we must differentiate (5.27). Note that for σ ∈ Ω0(E) we have

d

dt
Dāσ =

d

dt

(
S−1DaS

)
σ

= −sDāσ + S∗
( d
dt
Da

)
σ + S−1Da

( d
dt
Sσ
)

= S∗
( d
dt
Da

)
σ + (Dās)σ.

Therefore, since ā = Dā −Dbg, we find that

d

dt
ā = Dās+ S∗

( d
dt
Da

)
− d

dt
Dbg = Dās+ f,

where

f =
(
S∗
( d
dt
Da

)
− d

dt
Dbg

)
.

We have then that

0 =
d

dt

(
D∗āā

)
= D∗āDās+Dās#ā+D∗āf + f#ā.

If we multiply by s and integrate in time, after multiple applications of
Hölder’s inequality we find that

||Dās||2L2,2 = (D∗āDās, s)

≤ ||Dās||L2,2(||ā||L∞,4 ||s||L2,4 + ||f ||L2,2) + ||f ||L2,2 ||ā||L∞,4 ||s||L2,4 ,

Since

||f ||L2,2 ≤
∣∣∣∣∣∣ d
dt
Da

∣∣∣∣∣∣
L2,2

+
∣∣∣∣∣∣ d
dt
Dbg

∣∣∣∣∣∣
L2,2
≤ Cε(T )

by Minkowski’s inequality and the linearity of the Lebesgue integral. Morevoer,
by the irreducibility condition, equation (5.25), and the Sobolev embedding
we also have

||s||L2,4 ≤ C||s||L2(H1) ≤ C||Dās||L2,2 ,

where C depends on the locally uniform constant as in Lemma 5.5.1 and
the Sobolev embedding constant. Therefore, we find that

||Dās||L2,2 ≤ C(||ā||L∞,4 ||s||L2,4 + ||f ||L2,2 + ||f ||L2,2 ||ā||L∞,4),
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which yields the desired estimate for s. Finally, since

d

dt
ā =

d

dt
(S∗(Da)−Dbg) = Dās+ f,

the claim follows by taking T such that f is small enough.

Let δ > 0 be as in Lemma (5.3.3) and let R be chosen such that (5.11) is
satisfied, which is possible because FD ∈ C0(L2). By (5.8) we may choose
R = R(D0) on a time interval of sength CR2.

Claim 5.5.5. There exist constants C = C(D0), T0 = T (D0) > 0, ε = ε(D0) >
0 such that

||ā||2L∞,4 ≤ C
(
||Fā − Fbg||2L∞,4 + ε(T )

)
for 0 < T ≤ T0, provided ||ā||L∞,4 ≤ ε.

Proof. By Lemma (5.3.3) for any t we have

||ā||2L4 ≤ C||Dāā||2L2 + CR−2||ā||2L2 ,

since ā is in Coulomb gauge. By the definition of curvature there holds

Dāā = Fā − Fbg + ā#ā.

Note that by Jensen’s inequality we have

d

dt
||ā||2L2 ≤

∣∣∣∣∣∣ d
dt
ā
∣∣∣∣∣∣2
L2
.

By integrating in time and since ā(0) = 0, together with Claim 5.5.4 we have

||ā||2L∞,2 ≤
∣∣∣∣∣∣ d
dt
ā
∣∣∣∣∣∣2
L2,2
≤ Cε(T ).

Together, this yields

||ā||2L∞,4 ≤ C||Fā − Fbg||2L∞,2 + C1||ā||4L∞,4 + C2TR
2ε(T ),

and the claim follows.

Claim 5.5.6. Under the assumptions of Claim 5.5.5 there holds

||ā||L∞(H1) ≤ C
(
||Fā − Fbg||2L∞,2 + ε(T )

)
Proof. By definition, we have Dāā = Dbgā + (A1 + Abg + ā)#ā, and so for
fixed t it suffices to estimate

||∇refā||L2 ≤ ||∇̄ā||L2 + ||(A1 +Abg + ā)#ā||L2 ,
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where ∇̄ is the covariant derivative corresponding to D̄ = D̄ā. Now, by
Lemma 5.3.3, (5.11), (5.27) and the first variation of the curvature we have

||∇̄ā||2L2 ≤ C||D̄ā||2L2 + CR2
0||ā||2L2

≤ C||Fā − Fbg||2L2 + C||ā||4L4 + CTR−2ε(T ),

and in view of Claim 5.5.5 the assertion follows.

Claim 5.5.7. Under the assumptions of Claim 5.5.5 above there holds

||Fā − Fbg||2L∞,2 ≤ Cε(T ).

Proof. By (5.12) and the second Bianchi identity there holds

d

dt
Fā + ∆āFā = DāDās,

since for any σ ∈ Ω0(ad E), we have

d

dt
(Dā ◦Dā)σ =

(
d

dt
Dā ◦Dā)σ + (Dā ◦

d

dt
Dā

)
= (−D∗āFā +Dās)Dāσ +Dā(−D∗āFāσ +Dāsσ)

= (−D∗āFā +Dās)Dāσ −DāD
∗
āFāσ

+DāDāsσ +D∗āFāDāσ −DāsDāσ

= −DāD
∗
āFāσ +DāDāsσ

=⇒ d

dt
Fā = DāDās−DāD

∗
āFā = Dā

( d
dt
Dā

)
.

We also have

d

dt
(Fā − Fbg) + ∆ā(Fā − Fbg) = DāDās−

d

dt
Fbg −∆āFbg.

If we multiply by Fā − Fbg and integrate in time, we get

I :=
1

2
||Fā − Fbg||L∞,2 + ||Dā(Fā − Fbg)||2L2,2 + ||D∗ā(Fā − Fbg)||2L2,2

≤ II+III+IV.

By the second Bianchi identity, Claim 5.5.4, Hölder’s inequality and the
assumption that ||ā||L∞,4 ≤ ε, we get

II = (DāDās, Fā)− (DāDās, Fbg) =���
��

��:0
(s,D∗āD

∗
āFā)− (Dās,D

∗
āFbg) = −(Dās,D

∗
āFbg)

= −(Dās,D
∗
bgFbg + ā#Fbg)

≤ ||Dās||L2,2

(
||Fbg||L2(H1,2) + ||ā||L∞,4 ||Fbg||L2,4

)
≤ Cε(T )
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To estimate III we see that

III =
( d
dt
Fbg, Fā − Fbg

)
=
(
Dbg

( d
dt
Dbg

)
, Fā − Fbg

)
=
( d
dt
Dbg, D

∗
bg(Fā − Fbg)

)
=
( d
dt
Dbg, D

∗
ā(Fā − Fbg) + ā#(Fā − Fbg)

)
≤ Cε(T ) +

1

4
||D∗ā(Fā − Fbg)||2L2,2 + C||ā||2L∞,4 ||Fā − Fbg||2L2,4 ,

by Hölder and Young’s inequality. Since
∣∣ d
dtDbg

∣∣ ∈ L2,2 we may shrink the
time interval by the absolute continuity of the Lebesgue integral such that∣∣∣∣ d
dtDbg

∣∣∣∣2
L2,2 ≤ ε(T ). We need to check that ||Fā − Fbg||2L2,4 is bounded so

that we can make ||ā||L∞,4 small enough to make the whole second term
≤ Cε(T ). By Lemma 5.3.3,

||Fā − Fbg||2L2,4 ≤ C
(
||D∗ā(Fā − Fbg)||2L2,2 + ||Dā(Fā − Fbg)||2L2,2

)
+ CTR−2||Fā − Fbg||L∞,2 ,

which yields for small ε > 0, T > 0

III ≤ Cε(T ) +
1

3
I.

Lastly, by Hölder and Young’s inequalities we estimate

IV = (−∆āFbg, Fā − Fbg)

= −(DāFbg, Dā(Fā − Fbg))− (D∗āFbg, D
∗
ā(Fā − Fbg))

≤ C
(
||DāFbg||2L2,2 + ||D∗āFbg||2L2,2

)
+

1

3
I

≤ C
(
||Fbg||2L2(H1,2) + ||ā||L∞,4 ||Fbg||2L2,4

)
+

1

3
I

≤ Cε(T ) +
1

3
I.

Therefore I ≤ Cε(T ), as desired.

In view of the above claims, there exists T0, C > 0 such that

||āk||2L2(H1) ≤ Cε(T ) < ε

on [0, T ] for any T ≤ T0 and sufficiently large k ≥ k0(ε), where ε is the con-
stant as in the above claims.

The assertion of the lemma follows.

Proof of 5.5.2 continued.

By Lemma 5.5.3, we can choose 0 < T0 ≤ T such that for large k
the linearised operator lāk corresponding to the gauge condition (5.27) are
uniformly invertible on [0, T0]. Therefore Tk ≥ T0 for large enough k.
Moreover, Lemma 5.5.3 implies that the sequence āk is uniformly equi-
continuous in L2, where we take δ = Cε(T ) in this case. Since each āk ∈ H1,
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we have by Rellich’s theorem (see, for instance, Chapter 3.2.3 of [22]) that
the sequence is also pointwise relatively compact in L2. The Arzelà-Ascoli
Theorem (see, for instance, Appendix C.7 of [17]) then gives the uniform
convergence of a sub-sequence

āk → ā in C0(L2).

Hence, since Dbg,k → Dbg by construction, we have

D̄` = Dbg,k + āk → D̄ = Dbg + ā

uniformly in L2 as k →∞. Passing to the limit in (5.27), we obtain

D∗āā = 0.

Finally, d
dt ā ∈ L

2,2 and since ||āk||H1 os bounded, we have ā ∈ L∞(H1) by
lower semi-continuity and

||ā(t)||H1 ≤ Cε(t)→ 0

as t→ 0.

Similarly, Sk → S uniformly in L2 with s = S−1 d

dt
S ∈ L2(H1). In an

almost identical way to (5.24), one can show that the limit exists uniformly
and calculate the distributional limit to infer that Sk → S uniformly in H1,
and

Dā = S∗(Da).

This concludes the proof.

5.6 Uniqueness

Now that we have shown the existence of a solution to the YMHF prob-
lem, it is now a natural step to try and show uniqueness. It should be clear
that without the gauge fixing condition constructed in the previous section
that a solution of the Yang–Mills equations is highly non-unique, in that
every gauge equivalent connection is also a solution. In [30], Theorem 6.1,
Kozono, Maeda and Naioto show uniqueness modulo gauge transforms. In
their proof they do not require that D be irreducible, although the regular-
ity assumption is stronger. In this section we continue to follow Struwe’s
method and firstly prove that every point in time there exists a gauge trans-
form which brings the connection into Coulomb gauge, and then we show
that this solution is unique.

Given D0 ∈ H1, a family of background connections Dbg as in Section
5.4, let Da = Dbg + a be a local weak solution to YMHF and Dā = Dbg + ā
the corresponding family of normalised connections according to Proposi-
tion 5.5.2. By construction we have that Dā weakly solves the initial value
problem
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d

dt
Dā = −D∗āFā +Dās, (5.28)

D∗ā(ā) = 0, (5.29)
ā(0) = 0, (5.30)

where Fā = FDā , and

ā ∈ L∞
(

[0, T ];H1
(
Ω1(ad E)

))
∩H1

(
[0, T ];L2

(
Ω1(ad E)

))
,

Fā ∈ C0
(

[0, T ] : L2
(
Ω2(ad E)

))
,

s ∈ L2
(

[0, T ];H1
(
Ω0(ad E)

))
,

(5.31)

on some interval [0, T ], as determined by T0 in the previous section. ā at-
tains its initial data in the H1-sense. The following result shows - provided
D0 is irreducible - the solution Dā is unique.

Proposition 5.6.1. For any D0 ∈ H1 satisfying the irreducibility criterion, equa-
tion 5.25, there exists T > 0 and a unique solution (ā, s) of (5.28)-(5.30) on [0, T ]
satisfying (5.31). In addition, ā ∈ L2(H2), and ā and s are smooth for t > 0.
Finally, if D0 is smooth, ā and s are smooth for all t ∈ [0, T ] .

Proof. (i) In the previous section we showed the existence of a solution
(ā, s).

(ii) To see higher (spacial) regularity and uniqueness, we must firstly
establish suitable a-priori estimates for solutions in the above class.

Estimate for s. From the second Bianchi identity and by applying D∗ā to
(5.28), we have

D∗āDās = D∗ā

( d
dt
Dā

)
= D∗ā

( d
dt
Abg

)
+ ā#

d

dt
ā.

The last equality comes from the expanding Dā = Dbg + ā in equation
(5.28) and then differentiating. Note that the extra term is absorbed by the
arbitrariness of #. Multiplying by s and integrating in time, we find by an
application of Hölder’s inequality and Sobolev embedding theorem that

||Dās||2L2,2 = (D∗āDās, s) =
( d
dt
Abg, Dās

)
+
(
ā#

d

dt
ā, s
)

≤ C
∣∣∣∣∣∣ d
dt
Abg

∣∣∣∣∣∣
L2,2
||Dās||L2,2 + C||ā||L∞(H1)

∣∣∣∣∣∣ d
dt
ā
∣∣∣∣∣∣
L2,2
||s||L2(H1),

and by the irreducibility criterion of the connection and Young’s inequality,

||s||2L2(H1) ≤ C||Dās||2L2,2 ≤ C
∣∣∣∣∣∣ d
dt
Abg

∣∣∣∣∣∣2
L2,2

+ C||ā||2L∞(H1)

∣∣∣∣∣∣ d
dt
ā
∣∣∣∣∣∣2
L2,2

.

This establishes the stated regularity for s.
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Estimate for ā: By using (5.29) we may rewrite (5.28) as

d

dt
ā+D∗āFā +DāD

∗
āā = Dās−

d

dt
Abg.

Since Fā = Fbg+Dbgā+ā#āwe may also write Fā = Fbg+Dāā+ā#ā, where
the extra term is absorbed into the arbitrary multilinear map. Therefore, the
left hand side equals( d

dt
+ ∆ā

)
ā+D∗āFbg +D∗ā(ā#ā).

By expanding out ∆ā analogously to (5.3), we see that the above expression
differs from

(
d
dt + ∆1

)
ā by the error terms

∇1ā#ā+ ā#ā#ā+Abg#∇1ā+∇1Abg#ā+Abg#ā#ā

+Abg#Abg#ā+D∗āFbg.

Therefore, if ||ā||L∞(H1) is sufficiently small, which is possible by Lemma
5.5.3, from Lemma 5.3.2 we estimate (by bringing the terms we don’t want
to the other side and throwing them away because they are negative)

||ā||2V =
∣∣∣∣∣∣ d
dt
ā
∣∣∣∣∣∣2
L2

+ ||ā||L2(H2) ≤ C
(
||Dās||2L2,2 + ||Abg||2V

)
≤ C||Abg||2V .

This establishes the stated regularity of ā. The smoothness for ā t > 0 by
the smoothing property of the heat equation. Then, since ā is smooth for
t > 0 and s = −D∗āā, we find that s is also smooth for t > 0, again by the
smoothing effect of parabolic PDE.

Remark 5.6.2. Although showing uniqueness of the solution without gauge
fixing would be impossible, our choice of gauge was not arbitrary. As in
Chapter 3, where choosing the Coulomb gauge makes the functional ellip-
tic, it is choosing in the Coulomb gauge that we make the evolution equa-
tion parabolic.

(iii) Next we derive similar estimates for the difference (α, σ) of two
solutions (ā1, s1), (ā2, s2) of (5.28), (5.29) with ā1(0) = ā2(0) = ā(0) = 0. Let
D1 = Dā1 and so on. Note that (α, σ) satisfies

d

dt
α = −

(
D∗1F1 −D∗2F2

)
+D1s1 −D2s2

by (5.28). We also have

D1s1 −D2s2 = Dāσ + ā#σ + α#s, (5.32)

denoting by ā any convex linear combinations of ā1 and ā2, and similarly
for s. To see this, let D1 = Dā + γα, D2 = Dā − βα, where α, β ≥ 0 and
α+ β = 1. From this, we see that

D1s1 −D2s2 = Dāσ + γ(a1 − a2)s1 + β(a1 − a2)s2

= Dāσ + γ(a1 − a2)s1 + β(a1 − a2)s2

+ (βa1 + γa2)(s1 − s2)− (βa1 + γa2)(s1 − s2).
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We can simply rearrange this to achieve the desired result. Furthermore,
note that for i = 1, 2, we have

D∗i Fi = D∗āFi + α#Fi.

Note also that for σ ∈ Ω0(ad E), we have

(F1 − F2)σ = (Dā + βα)(Dāσ + γασ)− (Dā − γα)(Dāσ − βασ)

= DāDāσ + γ(Dāα)σ−
γαDāσ + βαDāσ + γβα(ασ)−DāDāσ + β(Dāα)σ

− βDāσ + γαDāσ − βγα(ασ) = (Dāα)σ

=⇒ F1 − F2 = Dāα

= Dā + α(ā)− α(ā)

= Dāα+ α#ā,

and also

D∗āα = D∗āa1 −D∗āa2 = α#ā.

Estimate for σ: By the second Bianchi identity and the previous estimates,
we have

D∗āDāσ = D∗ā

( d
dt
α
)

+D∗1D
∗
1F1 −D∗2D∗2F2 + α#D∗āFā +D∗ā(ā#σα#s)

= α#
d

dt
ā+

d

dt
α#ā+ α#D∗āFā +D∗ā(ā#σα#s).

Note that we may achieve such combinations by adding and subtracting
terms simultaneously from the equation, and then the minus signs disap-
pear when an arbitrary multilinear map is considered. Multiplying by σ,
integrating by parts in the last term, and from (5.25), we obtain

||σ||2L2(H1) ≤ C||Dāσ||2L2,2 = C(D∗āDāσ, σ)

≤ C
(∣∣∣∣∣∣∣∣ ddt ā

∣∣∣∣∣∣∣∣
L2,2

||α||L∞,4 + ||ā||L∞,4
∣∣∣∣∣∣∣∣ ddtα

∣∣∣∣∣∣∣∣
L2,2

+ ||D∗āFā||L2,2 ||α||L∞,4
)
||σ||L2,4

+ C
(
||ā||L∞,4 ||σ||L2,4 + ||α||L∞,4 ||s||L2,4

)
||Dāσ||L2,2 .

Therefore, by the irreducibility of the connection and the Sobolev embed-
ding, we get

||σ||2L2(H1) ≤ C||Dāσ||2L2,2 ≤ C
(∣∣∣∣∣∣∣∣ ddt ā

∣∣∣∣∣∣∣∣2
L2,2

+ ||D∗āFā||2L2,2 + ||s||2L2(H1)

)
||α||2L∞(H1)

+ ||ā||2L∞(H1)

∣∣∣∣∣∣∣∣ ddtα
∣∣∣∣∣∣∣∣2
L2,2

+ C||ā||2L∞(H1)||σ||
2
L2(H1).

Therefore, for T > 0 small enough, we see that

||σ||2L2(H1) ≤ Cε
(∣∣∣∣∣∣∣∣ ddtα

∣∣∣∣∣∣∣∣2
L2,2

+ ||α||2L∞(H1)

)
−→ 0

as T → 0.
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Estimate for α: From the equations for α, we see that

d

dt
α+ ∆ā = α#Fā +D∗ā(α#ā) +Dā(α#ā) +Dāσ + ā#σ + α#s,

and so for 0 < T < T (ε), ||A0||H1 + ||ā||L∞(H1) < ε and in view of our
estimate for σ, we estimate∣∣∣∣∣∣∣∣ ddtα

∣∣∣∣∣∣∣∣
L2

+ ||α||L∞(H1) + ||α||L2(H2) ≤ Cε
(∣∣∣∣∣∣∣∣ ddtα

∣∣∣∣∣∣∣∣
L2

+ ||α||L∞(H1) + ||α||L2(H2)

)
.

Thus, for ε > 0 sufficiently small, we get α = 0 and σ = 0, as claimed.

From Propositions 5.6.1 and 5.5.2 the uniqueness of the local solution
D = Dā to the YMHF as constructed in Section 5.5 follows.

5.7 Long Time Existence

In this section we will prove the claim about the maximality about the short
time existence time, T and also briefly discuss the application of Uhlen-
beck’s removable singularities theorem to the long time existence of the
flow, as analysed by Schlatter.

Proof of Theorem 5.2.3 (ii). Suppose that T < ∞ is maximal such that the
YMHF has a weak solution D, which is gauge-equivalent to a smooth so-
lution D̂ = (Ŝ−1

0 )∗(D) on (0, T ). Assume then by contradiction that there
exists R > 0 such that (5.11) holds. Then we have by Lemma 5.3.6 that

lim
t→T

D̂(t) = D̂(T )

exists in H1.

Therefore, for t0 < T sufficiently close to T we have that the local so-
lution D̂′ to the YMHF with inital data D̂′(t0) constructed in Section 5.4
extends to an interval [t0, t1) where t1 > T . By the uniqueness of weak solu-
tions of YMHF and equivariance of YMHF under time-independent gauge
transformations, we have that D(t) = (Ŝ0)∗(D̂′(t)) on [t0, T ). Therefore,
we have that (Ŝ0)∗(D̂′(t)) extends the solution D(t) to the interval [t0, t1),
which contradicts the maximality of T . Therefore the maximal existence
time is characterised by (5.1).

Note that by (5.9) and since YM(D0) < ∞, we have that the energy
contained in any singularity is finite. Since

lim sup
t↗t̄1

∫
BR(x̄i1)

|FD(t)|2 ∗ (1) ≥ ε0 > 0

we have that the energy contained in a singularity is also non-zero. There-
fore the number of singularities must be finite, otherwise the energy con-
tained within the singularities would be infinite, which is a contradiction
to the finite initial energy assertion. Therefore the energy concentrates in at
most finitely mani points.
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A full analysis of the long term existence and the asymptotic behaviour
of the solution to the YMHF can be found in [45], although we discuss here
how removable singularities plays a crucial role in this theorem. The the-
orem of Uhlenbeck which was proven in Chapter 4 must first be slightly
extended to be able to remove singularities where the connection has finite
energy, but is not necessarily Yang–Mills. This was proven shortly after her
original singularities theorem by Uhlenbeck in [55], Theorem 2.1, although
a more modern proof can be found in [41].

With this, the flow can be ‘patched over’ at times where the curvature
concentrates (at finitely many points) and the argument described above for
the short-time existence and uniqueness of the flow can be applied. This can
be continued (what turns out to be) finitely many times to obtain a limiting
connection. For the original proof see [45], although a detailed exposition
can also be found at [18], Chapter 6.
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