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Abstract. In this article, we establish homological Berglund–Hübsch mirror symmetry for curve
singularities where the A–model incorporates equivariance, otherwise known as homological Berglund–
Hübsch–Henningson mirror symmetry, including for certain deformations of categories. More pre-
cisely, we prove a conjecture of Futaki and Ueda [FU13, Conjecture 6.1] which posits that the
equivariance in the A–model can be incorporated by pulling back the superpotential to the total
space of the corresponding crepant resolution. Along the way, we show that the B–model cate-
gory of matrix factorisations has a tilting object whose length is the dimension of the state space
of the FJRW A–model, a result which might be of independent interest for its implications in the
Landau–Ginzburg analogue of Dubrovin’s conjecture.

1. Introduction

Given a polynomial f : Cn Ñ C with an isolated singularity at the origin, one can naturally
associate two categories to it; one by studying the singularity defined by f symplectically (the A–
model), and the other by studying it algebraically (the B–model). The first category is called the
Fukaya–Seidel category of f , FSpfq, and is a categorification of the space of vanishing cycles. On
the algebro-geometric side, one can study the (dg-)category of matrix factorisations, denoted by
mfpCn, fq. In the case where f is equivariant with respect to the action of an abelian group G
which contains C˚, one can also study the G-equivariant matrix factorisations, which is denoted by
mfpCn, G, fq.

Whilst there is no general prediction about how the Fukaya–Seidel category and the category of
matrix factorisations (equivariant or otherwise) of f should be related, homological mirror symmetry
predicts that certain singularities should arise in pairs such that the Fukaya–Seidel category of one
singularity matches (in a sense to be made precise shortly) the category of matrix factorisations of
its partner, and vice-versa. Crucially for us, this pairing of singularities should respect equivariant
structures. The main result of this article confirms this prediction in the case of invertible curve
singularities, where we incorporate equivariance into the A–model by following a suggestion of Futaki
and Ueda in [FU13].
To define an invertible polynomial, consider an nˆn matrix A, invertible over Q, with non-negative
integer entries aij . To such a matrix, one can associate a polynomial w P Crx1, . . . , xns

w “

n
ÿ

i“1

n
ź

j“1

x
aij
j . (1)

Note that w is quasi-homogeneous, with weight system given by pd0, d1, . . . , dn;hq, where
wptd1x1, . . . , t

dnxnq “ thwpx1, . . . , xnq

for any t P C˚, and d0 :“ h ´
řn

i“1 di. Whilst di ą 0 for i ą 0, there is a trichotomy of cases
depending on d0, and we say that w is log Fano, log Calabi–Yau or log general type if d0 is negative,
zero or positive, respectively.
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In [BH92], the authors define the transpose of w by associating to AT a polynomial qw and a weight
system p qd0, . . . , qdn;qhq; we call this the Berglund–Hübsch transpose. We call the polynomial w in-
vertible if it is of the form (1) for some A and both w and qw define isolated singularities at the origin.

Recall that for f P Crx1, . . . , xns and g P Cry1, . . . , yms, their Thom–Sebastiani sum is defined as
f ‘ g “ f b 1 ` 1 b g P Crx1, . . . , xn, y1, . . . , yms. (2)

A corollary of Kreuzer–Skarke’s classification of quasi-homogeneous polynomials, [KS92], is that any
invertible polynomial can be decoupled into the Thom–Sebastiani sum of atomic polynomials of the
following three types:

‚ Fermat: w “ xp11 ,
‚ Loop: w “ xp11 x2 ` xp22 x3 ` ¨ ¨ ¨ ` xpnn x1,
‚ Chain: w “ xp11 x2 ` xp22 x3 ` ¨ ¨ ¨ ` xpnn .

The Thom–Sebastiani sums of polynomials of Fermat type are also called Brieskorn–Pham.

Example 1.1. Consider the matrix A “

¨

˝

3 0 0
1 3 0
0 0 2

˛

‚. The corresponding polynomial is the E7

singularity, and is the Thom–Sebastiani sum of x3 ` xy3 and z2. In fact, ADE singularities in
normal form and in all dimensions are examples of invertible polynomials.

A key piece of data which is associated to an invertible polynomial w is its maximal symmetry
group

Γw :“ tpt1, . . . , tn, tn`1q P pC˚qn`1| t
a1,1
1 . . . t

a1,n
n “ ¨ ¨ ¨ “ t

an,1

1 . . . t
an,n
n “ tn`1u. (3)

In other words, by setting χw to be the character given by projection onto tn`1, and where Γw

acts on Cn in the obvious way, w is Γw-equivariant of degree χw. Note that tn`1 is completely
determined by the other ti, and so we consider Γw Ď pC˚qn. Since w is quasi-homogeneous, there
is a natural inclusion

ϕ : C˚ Ñ Γw

t ÞÑ ptd1 , . . . , tdnq.
(4)

We call any subgroup of Γw containing the image of ϕ admissible. In particular, observe that any
admissible subgroup is of finite index. The B–model of the homological mirror symmetry prediction
we consider will be a pair pw,Γq, where Γ is an admissible subgroup. In the case where Γ “ Γw, we
call w (and the corresponding transpose qw) maximally graded, and drop Γw from the notation.

Before moving on, we briefly discuss the better-understood maximally graded case. In this setting,
homological Berglund–Hübsch mirror symmetry is the following1.

Conjecture 1 ([Ued06, Tak10, LU22]). Let w be a maximally graded invertible polynomial and
qw its Berglund–Hübsch transpose. Then, there is a quasi-equivalence of Z-graded pre-triangulated
A8-categories over C

mfpCn,Γw,wq » FSp qwq.

In the above, the B–model is the category of Γw-equivariant matrix factorisations of w, whilst
FSp qwq is the Fukaya–Seidel category of qw defined in [Sei08]. The conjecture has been established
for Brieskorn–Pham polynomials and Thom–Sebastiani sums of singularities of type A and D in
[FU11] and [FU13], respectively, as well as for all invertible curve singularities in [HS20]. Moreover,
strong evidence in the case of chain polynomials was provided in [PV21], where it was shown that
the B–model satisfies a certain recursion relation for directed A8-categories, and the corresponding
argument on the A–side was sketched in detail.

1All categories here are appropriately derived.
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For any admissible group Γ Ď Γw, the category mfpCn,Γ,wq is theoretically unproblematic (al-
though it is still difficult to compute in practice), and so it is natural to ask which symplectically
defined category should be its mirror, extending Conjecture 1 to allow for non-maximally graded
symmetry groups. To this end, we introduce the notion of Berglund–Henningson dual group, defined
as

qΓ :“ HompΓw{Γ,C˚q. (5)
By construction, this is a subgroup of kerχ

qw Ď SLpn,Cq, the group of symmetries with respect
to which qw is invariant. This generalisation of invertible polynomials to include different symme-
try groups was initially studied in [BH95] and further explored in [Kra10]. By [ET12, Proposition
3], the definition given above of qΓ is a reformulation2 of [Kra10, Definition 15]. The appropriate
A–model should then be an ‘orbifold Fukaya–Seidel category’ associated to the Landau–Ginzburg
model qw : rCn{

qΓs Ñ C.
In general, the definition of an orbifold Fukaya–Seidel category is a difficult problem ([FU09, Prob-
lem 3]), even in the case of a Lefschetz fibration whose fibres are preserved by the group action, as
studied in [CH17, Section 13.1]. More problematic still is, if one begins with a hypersurface singu-
larity, qw, one must, at least in the original formulation of [Sei08], Morsify qw in order to construct
the Fukaya–Seidel category. Whilst Morsifications abound, these will, in general in the case where
qw is equivariant with respect to a group action, not respect this equivariance – cf. Example 3.1.
Motivated by extending Conjecture 1 to allow for non-maximally graded groups on the B–side, re-
cent work of Cho, Choa and Jeong in [CCJ20] constructs a new Z{2-graded A8-category which they
take as a definition of the orbifold Fukaya–Seidel category and conjecture that it agrees with the
standard definition in the non-equivariant case ([CCJ20, Conjecture 1.2]). This is a robust definition
in that it avoids the need to Morsify and is applicable to any polynomial which is not of log general
type, including in higher dimensions. On the other hand, all invertible curve singularities, with the
exception of x2 ` y2, are of log general type, so this work is not immediately applicable to curves;
the extension to include curves was recently studied in [CCJ24]. In contrast to these techniques,
the main result of this article concerns an alternative approach in two variables suggested by Futaki
and Ueda in [FU13].

Restricting to the case of curves, Futaki and Ueda suggest a model for the orbifold Fukaya–Seidel
category, which is defined as follows. Firstly, observe that qΓ » µ` for ` “ rΓw : Γs and that this
group acts diagonally on C2 by ξ ¨ px̌, y̌q “ pξx̌, ξ´1y̌q. That it is a finite group follows from the
admissibility assumption. In the case at hand, it is also immediate that it is an abelian group. In
combination with the general fact (for example, in [Kra10] or [ET12, Section 2]) that the dual group
of an admissible subgroup is in SLpn,Cq (n “ 2 for us), we can see that the action of the dual group
is as above. Since qΓ Ď kerχ

qw, we have that qw descends to a map
qw : X Ñ C,

where X “ C2{µ` is the A`´1 singularity. Then, let

π : rX Ñ X

be the crepant resolution of X and define
q

rw :“ π˚
qw : rX Ñ C.

We will discuss the issue of symplectic form in Section 3.1, although note that rX will no longer
be exact since the curves comprising the exceptional divisor are holomorphic. The slogan of this
approach is that we have traded equivariance for non-exactness. We denote the Fukaya–Seidel cate-
gory associated to q

rw : rX Ñ C as FSp q

rwq, although note that, in addition to the non-exactness, the
construction of such a category has several subtleties in comparison to the maximally graded case,

2Strictly speaking, the cited result pertains to the closely related maximal group of symmetries which keeps w
invariant, although the resulting quotient, and therefore dual groups, are the same.
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to be discussed momentarily.

With notation as above, Futaki–Ueda make the following conjecture:

Conjecture 2 ([FU13, Conjecture 6.1]). Let w be an invertible polynomial in two variables with
admissible group of symmetries Γ and qw its Berglund–Hübsch transpose with dual grading group qΓ.
Then, there is a quasi-equivalence of Z-graded pre-triangulated A8-categories over C

mfpC2,Γ,wq » FSp q

rwq.

Regarding the definition of FSp q

rwq, observe that the resonant Morsification qwε “ qw ´ εxy in
[HS20] preserves the qΓ-invariance, and so descends to a perturbation of qwε : X Ñ C. We will
see later that q

rwε “ π˚
qwε has only non-degenerate critical points, and we define FSp q

rwq to be the
Fukaya–Seidel category associated to q

rwε. In Section 3.2, we justify this definition.
Using this construction of the Fukaya–Seidel category, our main result is a proof of this conjecture,
including for certain deformations of categories. We notate the deformation of the Fukaya–Seidel
category of q

rw by a B–field B P H2p rX;Cq as FSp q

rw;Bq, dropping it from the notation when B “ 0.
On the B–side, we study the Γ-equivariant matrix factorisations of w~ε “ w `

ř`´1
j“1 εigi, where the

gi are the elements of Jac w which have the same Γ-degree as w, each εi P C, and w~ε only has a
unique isolated singularity at the origin.

Theorem 1. Conjecture 2 holds for all invertible curve singularities and any admissible symmetry
group. Moreover, for any Γ-equivariant deformation w~ε of w which has an isolated singularity at
the origin, there exists a B–field B P H2p rX;Cq such that there is a quasi-equivalence of Z-graded
pre-triangulated A8 categories over C

mfpC2,Γ,w~εq » FSp q

rw;Bq.

Remark 1.2. It should be noted that we do not study all deformations of w which remain Γ-
equivariant since we are demanding that w~ε only has an isolated singularity; however, the deforma-
tions we do consider is a Zariski-open set in SpecCrg1, . . . , gN s, where N “ dimCHH2pC2,Γ,wq.

Remark 1.3. In Lemma 7.1, we will see that the relevant categories in the maximally graded case are
rigid, and so we emphasise that the statement regarding deformations is a new result in comparison
to this setting.

With a model for the equivariant Fukaya–Seidel category in hand, our strategy of proof of Theo-
rem 1 follows the well-established method of finding and matching generating objects on both sides,
including in the deformed cases. We discuss this further in Section 1.1, but for now, we note that
the direct sum of the generating objects in question forms a tilting object. Recall that an object E
in a pre-triangulated A8/ dg- category is tilting3 if EndipEq “ 0 and hom‚pE , Xq “ 0 implies X » 0
for any other object X. In the case where a tilting object is the direct sum of exceptional objects,
one refers to its length as the length of the full, strong, exceptional collection which these objects
form.

A famous result of Seidel [Sei08, Theorem 18.24] establishes that the Fukaya–Seidel category has
a full (not necessarily strong) exceptional collection given by Lagrangian thimbles. Combining this
with Conjecture 1 yields the prediction that mfpCn,Γw,wq should have a full exceptional collection
of length µp qwq, the Milnor number of the transpose polynomial. Strengthening this, Lekili and Ueda
conjectured that mfpCn,Γw,wq should have a tilting object of length µp qwq ([LU22, Conjecture 1.3]).
Slightly stronger still is the prediction of Hirano and Ouchi that this tilting object should come from
a full and strong exceptional collection ([HO23, Conjecture 1.4]). This was shown for invertible
polynomials in n ď 3 variables in [Kra19] and for all chain polynomials in [HO23]. Moreover, it was

3We follow the notation convention that morphisms beginning with upper-case letters are at the level of cohomology,
whilst those beginning with lower-case letters are chain level morphisms.
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established in [FKK20] that the category of matrix factorisations for any maximally graded invert-
ible polynomial has a full exceptional collection of the predicted length, and that this collection is
strong under an additional (and mild) Gorenstein hypothesis.
Importantly, Seidel’s result is formulated in the setting where the total space is exact and the
Landau–Ginzburg model is not equivariant. Therefore, the evidence for predicting a full (strong)
exceptional collection of a given length becomes weaker in the non-maximally graded setting. Nev-
ertheless, the construction of a tilting object is a key element of our proof of Theorem 1, and we
establish the following:

Corollary 1. Let w be an invertible polynomial in two variables with admissible group of symmetries
Γ of index `. Then, mfpC2,Γ,wq, as well as any deformation considered in Theorem 1, has a tilting
object of length

µp qwq ´ 1

`
` `.

The length of this tilting object can be seen as being predicted by the Dubrovin conjecture for
Landau–Ginzburg models. This is strongly analogous to the original Dubrovin conjecture [Dub98],
and compares the algebraic structure of the open string B–model with the analytic structure of the
closed-string A–model of the same Landau–Ginzburg model. The relevant closed-string A–model
is studied in FJRW theory [FJR13], and should be thought of as a Landau–Ginzburg analogue of
Gromov–Witten theory. The input for the theory is as follows. Let w be an invertible polynomial
with Γ an admissible group of symmetries as before. Then, we consider Γ “ Γ X kerχ, where
χ “ χw|Γ (recall that χw was the character given by projecting onto tn`1 in (3)). Concretely, Γw

is given by setting tn`1 “ 1 in the presentation of Γw in (3), and Γ Ď Γw is the corresponding
subgroup. We call this the admissible group of finite symmetries; however, particularly when FJRW
theory is the focus, it is also common to refer to Γ as just being admissible. The state space of the
theory is then defined as

Hw,Γ :“
à

γPΓ

H Γ
γ ,

where Hγ “ HdimC Sγ pCdimC Sγ ,Λγ ;Cq for Sγ “ SpecCrx1, . . . , xnsγ the fixed locus of γ, w|Sγ is
the restriction of qw to this fixed locus, and Λγ is the stop in Sγ determined by w|Sγ . Just as
in Gromov–Witten theory, Hw,Γ can be equipped with a Frobenius manifold structure. Then,
Dubrovin’s conjecture in the Landau–Ginzburg setting is the following.

Conjecture 3 (Landau–Ginzburg Dubrovin conjecture). Let w be an invertible polynomial with
admissible group of finite symmetries Γ. Then, the Frobenius manifold structure of Hw,Γ is gener-
ically semisimple if and only if mfpCn,Γ,wq admits a full exceptional collection tE1, . . . , ENu of
length N “ dimC Hw,Γ.

For w and Γ as in Theorem 1, a short computation shows that

dimC Hw,Γ “
µp qwq ´ 1

`
` `, (6)

where ` “ rΓw : Γs and qw is the transpose polynomial. Therefore, for the cases studied in this paper,
Conjecture 3 reduces to establishing semisimplicity of the corresponding FJRW A–model. This was
recently done in [FHS23] for all but two Brieskorn–Pham curve singularities with Γ corresponding
to Γ » im ϕ » C˚, for ϕ as in (4), as well as simple curve singularities.
It should be noted that, whilst not trivial, Conjecture 3 becomes less interesting in the maximally
graded case in any number of variables. This is because the corresponding closed-string B–model,
Saito’s theory of primitive forms, is known to always be semisimple. Therefore, Conjecture 3 is an
immediate consequence of closed-string mirror symmetry, as established in [HLSW22]. In the non-
maximally graded cases, there is no well-defined closed-string B–model, let alone mirror symmetry
results, from which one can deduce (instances of) Conjecture 3.



6 MATTHEW HABERMANN

We end this introduction with the observation that Corollary 1 also relates to previous work at the
intersection of algebraic geometry and representation theory, independently of homological mirror
symmetry. Namely, all invertible polynomials in two variables yield L-graded Gorenstein rings of
Krull dimension one with non-positive Gorenstein parameter (see Section 2.1 for a definition and
discussion). The existence of a tilting object for Z-graded Gorenstein rings of Krull dimension one
with non-positive Gorenstein parameter was established in [BIY20, Theorem 1.2], and our corollary
can be seen as a partial generalisation of [BIY20, Theorem 2.1], which specifically studies Z-graded
hypersurface singularities krx, ys{pfq where |x| “ |y| “ 1. In loc. cit., k is any field, although our
result is only proven over C.

1.1. Strategy of proof. Broadly speaking, our strategy of proof follows that of [HS20]. Namely,
we handle the cases of loop, chain and Brieskorn–Pham invertible polynomials separately. We begin
with the loop case and study the undeformed category mfpC2,Γ,wq, showing that it has a tilting
object, which we call E . In order to study the loop A–model, a key element of our proof is the fact
that the resonant Morsifications which were utilised in loc. cit. are in fact qΓ-invariant, meaning
that it descends to X and can then be pulled back to rX, resulting in the function q

rwε : rX Ñ C
which has Morse critical points, and whose smooth fibre is the quotient of the Milnor fibre of qw by
qΓ. We discuss subtleties related to this in Section 3.2. With this set-up, our approach reduces to
the familiar strategy, albeit in the non-exact setting. We discuss this issue in Section 3.3.
We describe the directed category A

qΓ
associated to vanishing cycles in the smooth fibre of q

rwε. We
then establish mirror symmetry by showing that, at the level of cohomology, the endomorphism alge-
bra of the direct sum of the objects in A

qΓ
matches the endomorphism algebra of E before appealing

to formality to establish the corresponding chain-level statement. With the loop case handled, we
then deal with the chain and Brieskorn–Pham cases, explaining the alterations required in com-
parison to the loop case. This establishes the first statement of Theorem 1 about the undeformed
categories.
In order to extend this statement to the deformed categories, we compute the second and third
Hochschild cohomology groups of mfpC2,Γ,wq using a result of [BFK14] in order to identify every
(infinite order) deformation of this category with the category of Γ-equivariant matrix factorisations
of a deformation of w. For the A–model, we add a non-unital B–field in order to deform the Floer
products in the desired way. The proof of Theorem 1 for the deformed categories follows by explicitly
matching the deformation parameters on both sides.

1.2. Structure of the paper. As in [HS20], we begin by considering the loop case, first studying
the B–model in Section 2, before moving on to the A–model. We discuss the subtleties regarding
choice of Morsification and non-exactness of the total space in Section 3.2 and Section 3.3, respec-
tively, with the rest of Section 3 devoted to the study of FSp q

rwq for loop polynomials. The section
ends with a proof of Theorem 1 in this undeformed case.
We then consider the chain case in Sections 4 and 5, and Brieskorn–Pham polynomials in Section 6,
although it should be emphasised that all technical details, both in general and as they differ from
the maximally graded case are already present in the loop case; the chain and Brieskorn–Pham cases
are essentially simplifications.
In Section 7, we study deformations of categories, completing the proof of Theorem 1 and Corol-
lary 1.
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[HS20], of which this work is an outgrowth, for valuable comments on an earlier draft of this note,
and also patiently explaining some technical points about B–fields in Floer theory. He would also
like to thank the anonymous referee for careful reading of this paper, their numerous suggestions
for improvement, and encouraging the author to extend the main result to include deformations.
The author gratefully acknowledges support from the University of Hamburg and the Deutsche
Forschungsgemeinschaft under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” –
390833306.
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2. Loop B-model

In this section, our main goal is to study the dg-category of Γ-equivariant matrix factorisations,
mfpC2,Γ,wq, where w “ xpy ` yqx and Γ Ď Γw is an admissible subgroup of the maximal grading
group of index ` ď d “ gcdpp´ 1, q ´ 1q. Without loss of generality, we will assume p ě q ě 2. This
last constraint of q ě 2 comes from the fact that the case of q “ 1 has multiple isolated singularities,
and the Milnor fibre for the one at the origin is equivalent to the Milnor fibre of x2 ` y2. As in the
maximally graded case, we will encode this equivariance by an L-grading, where L is a rank one
abelian group with cyclic torsion.

Let4 S “ Crx, ys and R “ S{pwq. Recall that Γw-equivariance corresponds to an Lw grading on
R, where Lw is the character group of Γw. This group is generated by |x| “ ~x, |y| “ ~y and |w| “ ~c,
modulo the relations

p~x ` ~y “ ~x ` q~y “ ~c,

which is equivalent to the group Z2 quotiented by the subgroup generated by pp ´ 1, 1 ´ qq. Corre-
spondingly, for Γ Ď Γw of index `,

L » Z2{p
p ´ 1

`
,
1 ´ q

`
q » Z ‘ Z{p

d

`
q.

We will consider this as the group generated by ~x and ~y modulo the relation p´1
` ~x “

q´1
` ~y, and

note that L{Z~c » Z{

´

pq´1
`

¯

. Before moving on, we make a brief detour to remind the reader of the
relevant commutative algebra notions which we will require.

2.1. Recollections on maximal Cohen–Macaulay modules. For an L-graded ring R as above,
or as in Sections 4 and 6, recall that graded Gorenstein means that there is an isomorphism

RHomgr´RpC, Rp´αqq » Cr´ns,

where α is the Gorenstein parameter, n is the Krull dimension of R, and Mplq for an L-graded R
(or S) module is an internal grading shift such that Mplqi “ Mi`l. The Gorenstein parameter α is
negative (resp. zero, positive) if its projection to the Z-factor of L is negative (resp. zero, positive).
For an invertible polynomial, this value is ´d0, which is negative for all invertible polynomials other
than x2 ` y2, where it is zero.
Later, we will utilise Serre duality for maximal Cohen–Macaulay (MCM) modules which follows
from Auslander–Reiten duality ([AR87]). Recall that, when R is Gorenstein, a finitely-generated
R-module is MCM if

Extigr´RpM,Rq “ 0 for all i ą 0, (7)
and the stabilised category of maximal Cohen–Macaulay modules, denoted by MCMpRq, has the
same objects as MCMpRq (i.e. finitely generated R modules such that (7) holds), but the morphisms
are given by

Homgr´RpM,Nq :“ Homgr´RpM,Nq{PpM,Nq,

where PpM,Nq are those morphisms which factor through some free R-module. For any M,N P

MCMpRq such that Homgr´RpM,Nq is finite dimensional there is then Serre duality
Homgr´RpM,Nq » Homgr´RpN,Mp´αqrn ´ 1sq_, (8)

where p´q_ is the C-linear dual and n is again the Krull dimension of R. Note that, in our case,
the fact that w has an isolated singularity means that all Hom-spaces are finite dimensional. For
a proof of Serre duality in the Z-grading case, we refer to [IT13, Corollary 3.5], with the L-graded
case we need being a straightforward generalisation.

4This notation is consistent with Futaki–Ueda [FU13], but opposite to that of Dyckerhoff [Dyc11].
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By an L-graded matrix factorisation of rank r, K‚, we mean a two periodic sequence of L-graded,
rank r, free S-modules

K‚ “ p¨ ¨ ¨ Ñ Ki ki
ÝÑ Ki`1 ki`1

ÝÝÝÑ Ki`2 Ñ ¨ ¨ ¨ q, (9)

where ki`1 ˝ ki “ w ¨ Idr, and graded two-periodicity means a fixed choice of K‚p~cq » K‚r2s.
This presentation of a matrix factorisation naturally arises from the process of stabilisation; see, for
example, [Dyc11, Sections 2.1 and 2.2]. Namely, one starts with a finitely generated R-module M ,
and considers an R-free resolution. By a famous result of Eisenbud ([Eis80]), any such resolution
eventually becomes two periodic (i.e. stabilises). To get a matrix factorisation, we extend this two
periodic complex indefinitely to the right and then replace the R modules in the complex by the
corresponding free S modules. The inverse of this process is given by taking the cokernel of the map
k0. In fact ([Orl09, Prop. 3.5, Theorem 3.10]), there is an equivalence of categories

coker : HMFpC2,Γ,wq
„
ÝÑ MCMpRq,

where HMFpC2,Γ,wq is the homotopy category of mfpC2,Γ,wq. Observe that, if K‚ is a matrix
factorisation, then we have

K‚rns ÞÑ cokerpp´1qnknq “ M rns (10)
under this equivalence. We will use this fact frequently, particularly in the proofs of generation
statements.
A different perspective on the category of matrix factorisations is provided by a famous result of
Buchweitz and Orlov ([Buc86], [Orl09, Theorem 39]), which, generalised to stacks in [PV11] and
applied to our setting, shows that

Db
sgprw´1p0q{Γsq » HMFpC2,Γ,wq.

In the above, the category on the left is the derived category of singularities of the stack rw´1p0q{Γs,
which is defined as the quotient of the derived category of coherent sheaves on rw´1p0q{Γs by the
subcategory of perfect complexes. Moreover, L-graded R-modules naturally correspond to sheaves
on rw´1p0q{Γs, yielding an equivalence

Db
sgpgr´Rq » Db

sgprw´1p0q{Γsq.

Justified by the above equivalences, we will frequently switch between talking about graded R-
modules, sheaves on rw´1p0q{Γs and matrix factorisations. Moreover, observe that (8) and these
equivalences gives Serre functors on each of the categories we consider.

2.2. Graded matrix factorisations for loop polynomials. In this subsection, we introduce and
study the basic objects from which we will build our tilting object. These are broadly similar to
those of [HS20, Section 2.1]; however, direct computation as in loc. cit. would be intractable, since
the ranks of the matrix factorisations we need to consider increases with the index of Γ Ď Γw. The
main technical difference is therefore the utilisation of Serre duality in order to facilitate compu-
tation. In particular, we will see that the quiver Fig. 1 with ` “ 1 corresponds on-the-nose to the
[HS20, Fig. 1].
From the equivalences in Section 2.1, the intuition is that mfpC2,Γ,wq should correspond to struc-
tures sheaves of the irreducible components, sheaves supported at the origin (the singular point of
w´1p0q), and L-graded shifts of these. This indeed turns out to be the case.

Analogously to [HS20], we introduce the notation w “ xyw1 . . . w`, where

wr “ x
p´1
` ´ e

π
?

´1
` ηry

q´1
`



HOMOLOGICAL B-H-H MIRROR SYMMETRY FOR CURVE SINGULARITIES 9

for η a fixed primitive `th root of unity. Continuing with notation introduced in [HS20, Section
2.2], we define w “ w1 . . . w`. With this, there are ` ` 2 matrix factorisations coming from (Γ-
equivariantly) factoring w. These correspond to

Kx
‚ “ p¨ ¨ ¨ Ñ Sp´~cq

yw
ÝÝÑ Sp´~xq

x
ÝÑ S Ñ ¨ ¨ ¨ q,

Ky
‚ “ p¨ ¨ ¨ Ñ Sp´~cq

xw
ÝÝÑ Sp´~yq

y
ÝÑ S Ñ ¨ ¨ ¨ q,

as well as the matrix factorisations

Kwr
‚ “ p¨ ¨ ¨ Ñ Sp´~cq

w{wr
ÝÝÝÑ Sp´

p ´ 1

`
~xq

wr
ÝÑ S Ñ ¨ ¨ ¨ q.

These matrix factorisations are the obvious generalisation of the maximally graded case, and, as
in that case, we also consider the objects

iKx “ Kxppi ` 1 ´ pq~xq

jKy “ Kyppi ` 1 ´ qq~yq

where i “ p ´
p´1
` , . . . , p ´ 1 and j “ q ´

q´1
` , . . . , q ´ 1.

On the other hand, the generalisation of the matrix factorisations corresponding to sheaves sup-
ported at the origin require more technical considerations. Namely, for p ´

p´1
` ď i ď p ´ 1,

1 ď j ď q ´ 1, we set k “ t
pj´1q`
q´1 u and consider the ideal

Ii,j “ pxi´p`´1´kq
p´1
` q `

k
ÿ

t“1

pxi´p`´k´1`tq p´1
` yj´pk`1´tq q´1

` q ` pyjq (11)

“ pxi´p`´1´kq
p´1
` , xi´p`´kq

p´1
` yj´k q´1

` , . . . , xi´p`´1q
p´1
` yj´

q´1
` , yjq (12)

and the L-graded R-modules
Rppi ` 1q~x ` pj ` 1q~yq{Ii,j .

The corresponding matrix factorisation, which we denote by i,jK0, is given by stabilising this module.
Namely, an R-free resolution can be built by beginning with

Rp~c ´ pk ` 1q
p ´ 1

`
~x ` j~yq ‘

k´1
à

t“0

Rp~cq ‘ Rppi ` 1q~x ` ~yq

´

xi´p`´1´kq
p´1
` . . . yj

¯

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Rppi ` 1q~x ` pj ` 1q~yq,

yielding a rank pk ` 2q matrix factorisation. Observe in particular that substituting ` “ 1 into this
presentation recovers the definition of i,jK0 in [HS20]. The k terms in the middle of the ideal in
(11) are all monomials of degree i~x ` j~y ´ pp ´ 1q~x p“ i~x ` j~y ´ pq ´ 1q~yq.

Remark 2.1. It might seem objectionable that the symmetry which exists between p and q has
been broken in the above ideals; however, we will later see that, for example, taking the ideals
corresponding to 1 ď i ď p ´ 1 and q ´

q´1
` ď j ď q ´ 1, would lead to a tilting object whose

endomorphism algebra corresponds to the same quiver-with-relations as the choice we have made –
cf. Remark 2.10.
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From this, it is straightforward to check that the maps defining the matrix factorisation are given
in even degree by

d0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

yj´k q´1
` 0 0 . . . 0 xp´i` p´1

`
p`´1´kqy

´x
p´1
` y

q´1
` 0 . . . 0 0

0 ´x
p´1
` y

q´1
` . . . 0 0

0 0 ´x
p´1
` . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . y
q´1
` 0

0 0 0 . . . ´xi´p`´1q
p´1
` xyq´j

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (13)

and in odd degree by d1 “ Adjpd0q, the adjugate matrix. Explicitly, we have that i,jK0 corresponds
to the matrix factorisation

Sp~c ´
p´1
` ~xq Sp~c ´ pk ` 1q

p´1
` ~x ` j~yq Sp2~c ´

p´1
` ~xq

Àk´1
t“0 Sp~c ´

p´1
` ~xq

Àk´1
t“0 Sp~cq

Àk´1
t“0 Sp2~c ´

p´1
` ~xq

Sppi ` 1q~x ` pj ` 1q~y ´ ~cq Sppi ` 1q~x ` ~yq Sppi ` 1q~x ` pj ` 1q~yq

À

¨ ¨ ¨

À À

¨ ¨ ¨

À

d0

À

d1

where the rightmost term is in cohomological degree 0 and d0, d1 map between the entire columns,
not just he middle summands.

As in the maximally graded case, we are interested in a full subcategory B of mfpC2,Γ,wq

consisting of the objects described above. Namely, let B be the category consisting of the pq´1
` ` `

objects

ti,jK0,
iKxr3s, q´

q´1
` Kyr3s, . . . , q´1Kyr3s, Kw1r3s, . . . , Kw`

r3sui“p´
p´1
`

,...,p´1; j“1,...,q´1.

The reason for the shifts is so that all morphisms turn out to have cohomological degree 0. In the
following sections we compute the cohomology level morphisms between the objects in this category.
The reader willing to take these computations on faith may skip directly to Theorem 2.8 for the
characterisation of B as a quiver algebra.

2.3. Morphisms between the Kx’s, Ky’s and Kwr ’s. As in [HS20], we leverage a result of
Buchweitz [Buc86, Section 1.3, Remark (a)] which establishes the following: given L-graded R-
modules M and M 1 with corresponding stabilisations K and K 1, we have

Hom‚
HMFpC2,Γ,wqpK,K 1q » H‚

`

Homgr´RpK bS R,M 1q
˘

The Hom on the right-hand side is taken component-wise on the complex K bS R. We refer to
[Kra19, Proposition 2.23] for a proof of the statement. Note that Buchweitz’s original remark is
missing a Gorenstein assumption, and, as demonstrated in [Kra19, Remark 2.24], does not hold
without it.

Remark 2.2. Strictly speaking, Buchweitz’s result only applies for ‚ " 0; however, since r2s » p~cq
in HMFpC2,Γ,wq, we can always achieve that the degree is high enough for the theorem to apply,
and this does not affect the result of the calculation.

For calculations regarding the modules Kx, Ky and Kwr , the arguments carry over almost ver-
batim from the maximally graded case [HS20, Sections 2.3 and 2.4], and we have:

Lemma 2.3. In HMFpC2,Γ,wq, we have the following:
(i) For any i P Z, the objects iKx, . . . ,

i` p´1
`

´1Kx are exceptional and pairwise orthogonal.
(ii) For any j P Z, the objects jKy, . . . ,

j`
q´1
`

´1Ky are exceptional and pairwise orthogonal.
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(iii) The objects Kw1 , . . . ,Kw`
are exceptional and pairwise orthogonal.

(iv) For each i “ p ´
p´1
` , . . . , p ´ 1, j “ q ´

q´1
` , . . . , q ´ 1, r “ 1, . . . , `, iKx, jKy and Kwr are

mutually orthogonal. �

2.4. Morphisms between the Kwr ’s and K0’s. The fact that Hom‚pKwr ,
i,jK0q “ 0 essentially

follows from the arguments of [HS20, Section 2.5]. In the other direction Hom‚pi,jK0, Kwrq we
argue as follows. Firstly, observe that, since w has an isolated singularity at the origin, morphisms
of R-modules are finite dimensional, and Serre duality for the corresponding MCM modules applies.
We then observe that

dimCHom‚pKwr ,
i,jK0p~c ´ ~x ´ ~yqq “

#

1 if ‚ “ ´3

0 otherwise,
(14)

and so Hom‚pi,jK0, Kwrq is non-trivial only in cohomological degree three, where it is rank one; it
is then straightforward to write down this non-trivial element.

Lemma 2.4. For each r “ 1, . . . , `, there is a single morphism between i,jK0 and Kwr given by

Hom3pi,jK0, Kwrq “ C ¨

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ypk`1q
q´1
`

´j

e´πi
` η´r

pe´πi
` η´rq2

...

pe´πi
` η´rqk

pe´πi
` η´rqk`1xp´1´i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where k “ t
pj´1q`
q´1 u as before.

Proof. Observe that the complex computing the morphisms has differential given by dT0 in odd
degree and dT1 “ Adjpd0qT in even degree, where d0 is the map from (13). It is then clear that the
above vector defines an element in the kernel; the only non-trivial term to check is that it is in the
kernel of the last row of dT0 , although this follows from observing that this factors into p` ´ 1 ´ kq

polynomials, one of which is wr. It is clear that this is not in the image of dT1 , since the k ´ 1

constant elements in the kernel cannot be in the image of a degree p´1
` ~x-map. The fact that this

spans the cohomology group follows from (14). �

Remark 2.5. It might be worth reminding the reader that a morphism of matrix factorisations is a
pair of morphisms which are compatible with the differentials on both complexes. The Hom-space
written in Lemma 2.4 uniquely determines such a pair of morphisms (up to scaling), although is,
strictly, speaking, only half of the data. In this case, the transpose of the vector spanning this space
is (up to scaling) the component of the morphism i,jK0 Ñ Kwr r3s in odd degrees. This is relevant
when computing the composition of morphisms, as we will see in Theorem 2.8.

2.5. Morphisms between Kx’s and Ky’s and K0’s. For each I we have that Hom‚pIKx,
i,jK0q

vanishes, which can be computed in the same way as in the maximally graded case. In order to
compute the morphisms in the other direction, we argue again by Serre duality. In particular, we
have that

dimCHom‚pIKx,
i,jK0p~c ´ ~x ´ ~yqq “

#

1 if I “ i, ‚ “ ´3

0 otherwise,
(15)

and similarly there is only one morphism Hom‚pJKx,
i,jK0p~c´~x´~yqq in degree negative three when

J ” j mod q´1
` , and is zero otherwise. Note that the complexes computing cohomology do not

vanish identically in the cases where we claim the cohomology is zero, but the complexes are exact.

Lemma 2.6. In HMFpC2,Γ,wq there are no morphisms from IKx to i,jK0. There are no morphisms
in the other direction unless I “ i, in which case the morphism space is spanned by p0, 0, . . . , 0, 1q
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in degree 3. Similarly, the only morphisms between JKy and i,jK0 are from the latter to the former,
and are given by p1, 0, . . . , 0q in degree 3 when j ” J mod q´1

` .

Proof. The proof follows the same strategy as the proof of Lemma 2.4. Namely, the statement
about the morphisms between IKx and i,jK0 is immediate after observing that multiplication by
y‚ is exact, and the only morphism from i,jK0 to iKx is in degree three. The statement about
morphisms between JKy and i,jK0 is proved similarly, although this time multiplication by x‚ is
exact. �

2.6. Morphisms between K0’s. Computing morphisms i,jK0 Ñ I,JK0 is analogous to the maxi-
mally graded case. Namely, morphisms are spanned by the module

`

R{II,J
˘

pI´iq~x`pJ´jq~y
.

From this, it is immediate that there are no morphisms unless J ě j; however, unlike in the
maximally graded case, it is now possible to have i ą I since p´1

` ~x “
q´1
` ~y. Putting this together,

we conclude:

Lemma 2.7. For all i P tp ´
p´1
` , . . . , p ´ 1u and j P t1, . . . , q ´ 1u, we have

Hom‚pi,jK0,
I,JK0q »

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

spanCtxI´iyJ´j , . . . , xI´i`k p´1
` ypJ´jq mod q´1

` u if I ě i, J ě j

and ‚ “ 0

spanCtxI´i` p´1
` yJ´j´

q´1
` , . . . , xI´i`k p´1

` ypJ´jq mod q´1
` u if I ă i,

J ě j `
q´1
`

and ‚ “ 0

0 otherwise. �

2.7. The total endomorphism algebra of the basic objects. From the results of the previous
sections, we see that the objects in B are all exceptional. In fact, the endomorphism algebra of the
objects in B are presented as a quiver-with-relations.

Theorem 2.8. The cohomology-level total endomorphism algebra of the objects of B is the algebra
of the quiver-with-relations described in Fig. 1, with all arrows living in degree zero. In particular,
B is a Z-graded A8-category concentrated in degree 0, so is intrinsically formal.

Remark 2.9. Before moving on to the proof, we remark that the quiver for maximally graded loop
polynomials, as studied in [HS20, Theorem 2.13], is on-the-nose Fig. 1 with ` “ 1. In particular,
the relations (iii) becomes vacuous in this case. Foreshadowing Section 7, it is these relations which
get deformed when looking at deformations of the algebra.

Proof of Theorem 2.8. In order to prove the statement, all that is required is to show that the
morphisms of matrix factorisations above compose in the claimed way. The first and second rela-
tions follow from the maximally graded case, [HS20, Theorem 2.13], mutatis mutandis. The third
relation is not present in the maximally graded case, although checking that it holds is similarly
straightforward by composing generators. Namely, consider

x
p´1
` , y

q´1
` P Hom0pp´1,p`´1q

q´1
` K0,

p´1,q´1K0q,

cr P Hom0pp´1,q´1K0, Kwr r3sq.

Following on from Remark 2.5, we compute the composition of morphisms in odd degree5 to demon-
strate the relationship. In particular, the morphism cr is represented in these degrees by (a scalar

5We mean morphisms between the odd degrees of the matrix factorisations, not that the morphism is in odd degree.
Indeed, all computations are for morphisms in degree zero.
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¨ ¨ ¨

q´1
`

p´1
`

y y b

x x

iKxr3s

Kwr r3s

¨ ¨ ¨
y y

b

x x

¨ ¨ ¨
y y

b

a c`
c1

a

¨ ¨ ¨

...
...

...

x x

. .
.

¨ ¨ ¨

jKyr3s

y y y

x x
¨ ¨ ¨

y
y

yx x

¨ ¨ ¨
y y y

xx
...

...

x x

. .
.

y¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨

. .
....

...

y
¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨
y

x x

¨ ¨ ¨y y y

x x
¨ ¨ ¨

y
y

yx x

¨ ¨ ¨
y y y

x x

i,jK0

...
...

x x

. .
.

Relations:
(i) xy “ yx

(ii) ay “ bx “ 0

(iii) crpx
p´1
` ´ e

πi
` ηry

q´1
` q “ 0

Figure 1. The quiver describing the category B for loop polynomials. There are `
blocks of size q´1

` ˆ
p´1
` .

multiple) of the transpose of the vector spanning the Hom-space in Lemma 2.4 after substitut-
ing i “ p ´ 1, j “ q ´ 1. It is a straightforward exercise to show that the morphism of matrix
factorisations corresponding to x

p´1
` is given by the p` ` 1q ˆ ` matrix

¨

˚

˚

˚

˚

˚

˝

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0

˛

‹

‹

‹

‹

‹

‚

in odd degrees, and similarly the morphism y
q´1
` is given in odd degrees by the matrix of the same

form as above with a row of zeros in the first row and then the `ˆ ` identity matrix underneath. It
is then immediate that the third relation holds. �

Remark 2.10. Following on from Remark 2.1, it is here that it becomes evident that the resulting
category is independent of the choice of representatives for i,jK0. In particular, making different
choices would lead to rearranging the blocks in Fig. 1, which is evidently the same quiver. For
example, below is the quiver for an alternative collection of Ii,j for ` “ 2. Whilst the modules
in the collection change, the resulting quiver-with-relations is the same, and can be seen to be a
rearrangement of that of Fig. 1 in the case of ` “ 2.
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¨ ¨ ¨
y y b

x x

iKxr3s

Kwr r3s

q´1
`

p´1
`

¨ ¨ ¨
y y

b

x x

¨ ¨ ¨
y y

b

a c`
c1

a

¨ ¨ ¨

...
...

...

x x

. .
.

jKyr3s

¨ ¨ ¨
y y

y

x x
¨ ¨ ¨

y y

y

x x

¨ ¨ ¨
y y

y

xx

...
...

x x

. .
.

Relations:
(i) xy “ yx
(ii) ay “ bx “ 0

(iii) crpx
p´1
` ´ e

πi
` ηry

q´1
` q “ 0

Figure 2. Quiver corresponding to an alternative collection of Ii,j for ` “ 2. Whilst
we have considered different objects, it is clear that the resulting category is the
same, since the quiver is manifestly a rearrangement of Theorem 2.8 for ` “ 2.

Example 2.11. Consider the polynomial xpy ` ypx with ` “ p ´ 1. Then, the corresponding quiver
is given by

¨ ¨ ¨
x

y

x

y

x

y

x

y

a

b

c1
cp´1

Relations:
(i) xy “ yx
(ii) ay “ bx “ 0

(iii) crpx ´ e
πi

p´1 ηryq “ 0

Figure 3. Quiver corresponding to xpy ` ypx.

This corresponds to a tilting module of the Z-graded ring Crx, ys{pxpy ` ypxq with |x| “ |y| “ 1,
and is a special case of [BIY20, Theorem 2.1].

2.8. Generation. Now that we have characterised the full subcategory B Ď HMFpC2,Γ,wq, we
aim to show that it generates. To this end, we utilise the following result of Polishchuk-Vaintrob:

Lemma 2.12 ([PV16, Proposition 2.3.1], cf. [Dyc11, Corollary 5.3]). The category HMFpC2,Γ,wq

is split-generated by the L-grading shifts of the stabilisation of the module R{px, yq. �

It should be emphasised that Lemma 2.12 is a statement about split generation of the homotopy
category HMFpC2,Γ,wq, rather than generation of the dg-category mfpC2,Γ,wq. Nevertheless,
establishing that B split generates HMFpC2,Γ,wq is the major step towards the required generation
statement.
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Proposition 2.13. The category HMFpC2,Γ,wq is split-generated by B.

Before giving the proof, we record the required generation result as the following corollary.

Corollary 2.14. The functor
TwB Ñ mfpC2,Γ,wq

is a quasi-equivalence.

Proof. By Proposition 2.13, the functor
Twπ B Ñ HMFpC2,Γ,wq

is a quasi equivalence. Since B is intrinsically formal, there is also a quasi-equivalence
Twπ B Ñ mfpC2,Γ,wq.

To show that B generates mfpC2,Γ,wq, observe that, since B is a full exceptional collection in TwB,
the latter is already idempotent complete, as explained in [Sei08, Remark 5.14]. Therefore, taking
the idempotent completion of TwB does nothing, and we get the result. �

Proof of Proposition 2.13. We focus on the case of ` ą 1 in order to differentiate it from [HS20,
Proposition 2.14], only explaining the modifications needed to incorporate the change of grading.
Namely, let

V “ tiKx,
jKy, Kwr ,

i,jK0u

be the objects of B. We then show that Rplq{px, yq P xV y for any l P L and appeal to Lemma 2.12
to show that V split-generates HMFpC2,Γ,wq.

Since r2s is equivalent to p~cq, we must only show that Rplq{px, yq P xV y for l P L{Z~c » Z{

´

pq´1
`

¯

.
The argument to build the modules

tRpa~x ` b~yq{px, yqu
tp´

p´1
`

`1ďaďp, 2ďbďqu

tRpa~x ` ~yq{px, yqu
tp´

p´1
`

ďaďp´1u

tRppp ´
p ´ 1

`
q~x ` b~yq{px, yqu

t1ďbď
q´1
`

`1u

with the exception of Rppp ´
p´1
` q~x ` ~yq{px, yq in the second collection of modules and Rp~cq{px, yq

in the third carry over from [HS20, Proposition 2.14] essentially unchanged. Note that, along the
way, we built the modules

Rpa~xq{pxq, for 1 ď a ď p ´ 1

Rpb~yq{pyq for 1 ď b ď q ´ 1,
(16)

and we will repeatedly appeal to this fact.

To build Rppp´
p´1
` q~x`~yq{px, yq, we begin by constructing Kwrpl~xq for l “ 0, . . . , p`´ 1q

p´1
` and

any r “ 1, . . . , `. Firstly, we have that

Rp~xq{pwrq » Cone
´

Rpp1 ´
p ´ 1

`
q~xq{pxq

wr
ÝÑ Rp~xq{pxwrq

¯

.

The domain of this morphism is p´
p´1
` Kx, whilst the codomain can be constructed as an extension

of Rp~xq{pxq by R{pwrq. From this, we build Rp2~xq{pxwrq as the extension

0 Ñ Rp~xq{pwrq
x
ÝÑ Rp2~xq{pxwrqq Ñ Rp2~xq{pxq Ñ 0,

where the module Rp2~xq{pxq was constructed in (16). From this, we get

Rp2~xq{pwrq » Cone
`

Rpp2 ´
p ´ 1

`
q~xq{pxq

wr
ÝÑ Rp2~xq{pxwrq

˘

,
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where the domain is in (16), and the codomain was constructed immediately above. We then proceed
inductively, alternatingly constructing Rpl~xq{pxwrq and then Kwrpl~xq for l “ 0, . . . , p` ´ 1q

p´1
`

(appealing to (16) once l ą
p´1
` ). Note that this argument is valid for any r “ 1, . . . , `.

With these modules constructed, we then iteratively construct the following modules.

0 Ñ R{pw1q
w2
ÝÑ Rp

p ´ 1

`
~xq{pw1w2q Ñ Rp

p ´ 1

`
~xq{pw2q Ñ 0

0 Ñ Rp
p ´ 1

`
~xq{pw1w2q

w3
ÝÑ Rp2

p ´ 1

`
~xq{pw1w2w3q Ñ Rp2

p ´ 1

`
~xq{pw3q Ñ 0

...

0 Ñ Rpp` ´ 1q
p ´ 1

`
~xq{pw1w2 . . . w`´1q

w`
ÝÑ Rpp` ´ 1q

p ´ 1

`
~xq{pw1w2w3 . . . w`q Ñ Rppp` ´ 1q

p ´ 1

`
q~xq{pw`q Ñ 0

We then observe that Rpp`´1q
p´1
` ~xq{pw1w2w3 . . . w`qr1s “ Rppp´

p´1
` q~x`~yq{pxyq (cf. (10)), and

so we can construct Rppp ´
p´1
` q~x ` ~yq{px, yq as the cone of the morphism

Rpp` ´ 1q
p´1
` q~x ` ~yq{pyq

À

Rppp ´
p´1
` q~x ` ~yq{pxyq.

Rppp ´
p´1
` q~xq{pxq

px yq

Note that Rpp`´1q
p´1
` q~x`~yq{pyq “ Rpq´

q´1
` yq{pyq, and so both modules in the domain are in (16).

Finally, all that is left to do is construct the module Rp~cq{px, yq, which we again do iteratively.

0 Ñ Rp~c ´ p
q ´ 1

`
` 1q~yq{pxq

y
ÝÑ Rp~c ´

q ´ 1

`
~yq{pxq Ñ Rp~c ´

q ´ 1

`
~yq{px, yq Ñ 0

0 Ñ Rp~c ´
q ´ 1

`
~yq{pxq

y
ÝÑ Rp~c ´ p

q ´ 1

`
´ 1q~yq{pxq Ñ Rp~c ´ p

q ´ 1

`
´ 1q~yq{px, yq Ñ 0

...

0 Ñ Rp~c ´ 2~yq{pxq
y
ÝÑ Rp~c ´ ~yq{pxq Ñ Rp~c ´ ~yq{px, yq Ñ 0.

The module Rp~c´ p
q´1
` ` 1q~yq{pxq “ Rpp`´ 1q

p´1
` ~xq{pxq is from (16), and the modules on the right

of the above short exact sequences are graded stabilisations of the origin which have been previously
constructed. Putting this all together, we have

Rp~cq{px, yq » ConepRp~c ´ ~yq{pxq
y
ÝÑRp~cq{pxqq

where the term on the domain was constructed above and the codomain is p´1Kxr2s. �

We deduce the following corollary, whose proof follows from Corollary 2.14 and Theorem 2.8 in
the same way as in the proof of [HS20, Theorem 2.19]:

Corollary 2.15 (Corollary 1, undeformed loop polynomial case). The object

E :“

¨

˚

˚

˝

à

i“p´
p´1
`

,...,p´1
j“1,...,q´1

i,jK0

˛

‹

‹

‚

‘

¨

˝

à

i“p´
p´1
`

,...,p´1

iKxr3s

˛

‚ ‘

¨

˝

à

j“q´
q´1
`

,...,q´1

jKyr3s

˛

‚ ‘

˜

à

r“1,...,`

Kwr r3s

¸

is a tilting object for mfpC2,Γ,wq.
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3. Loop A-model

3.1. The crepant resolution of the A`´1 singularity. We begin this section with a recounting
of the classically understood crepant6 resolution of du Val singularities of type A – see, for example
[Rei03]. This subsection will be applicable to all invertible polynomials in two variables.

Recall that the A`´1 singularity is defined as C2{µ` “ X “ SpecCrx, ysµ` » SpecCru, v, ws{puv´

w`q, where µ` acts by ξ ¨ px̌, y̌q “ pξx̌, ξ´1y̌q. The crepant resolution is

π : rX Ñ X,

where

rX “
ď̀

i“1

rXi,

and each rXi » C2
pλi,µiq

. Here, the coordinates λi, µi are related to the coordinates on X by λi “

u{wi´1, µi “ wi{u where this makes sense. Correspondingly, the transition functions are given by
rXizpµi “ 0q

„
ÝÑ rXi`1zpλi`1 “ 0q

pλi, µiq ÞÑ pµ´1
i , µ2

iλiq.

On each chart, the resolution is given as
π|

rXi
: C2

pλi,µiq
Ñ X

pλi, µiq ÞÑ pλi
iµ

i´1
i , λ`´i

i µ``1´i
i , λiµiq.

This resolution is constructed by iterated blowups of X. An important fact is that the blowup
process yields an embedding of rX into C3 ˆ P2 ˆ ¨ ¨ ¨ ˆ P2, where there are t `2 u factors of P2. We
define the symplectic form ω

rX
to be the pullback of the product of the standard symplectic form

on C3 and the Fubini–Study form on the P2 factors. We also drop rX from the notation and refer to
the symplectic form simply as ω, since we believe that no confusion can arise. This form is simple
to write down in a given patch, although has quite a few terms. As an example, in the patch rX1, it
is given by

φ˚
1ω “

i

2

´

p1 ` |µ1|2 ` |µ1|4qdλ1 ^ dλ̄1 ` pλ1µ̄1 ` 2|µ1|2λ1µ̄1qdµ1 ^ dλ̄1

` pµ1λ̄1 ` 2|µ1|2µ1λ̄1qdλ1 ^ dµ̄1 ` p4|λ1|2|µ1|2 ` |λ1|2qdµ1 ^ dµ̄1

`
p1 ` 4|µ1|2 ` |µ1|4qdµ1 ^ dµ̄1

p1 ` |µ1|2 ` |µ1|4q2

¯

,

where φ1 : rX1 Ñ rX is the inclusion of the chart rX1 » C2
pλ1,µ1q

. It is extremely important that, since
the spheres in the exceptional locus are holomorphic, ω is not exact.
In terms of writing down rωs P H2p rXq, observe that in the case ` “ 2, then rX “ totOP1p´2q “ T ˚P1,
and rωs “ 2rπ˚ωFSs “ ´πrPDpCqs, where C is the exceptional sphere, and ωFS is the Fubini–Study
form on P1 (see, for example, [Rit14]). Symplectically, the crepant resolution of the A`´1 is the
completion of ` ´ 1 copies of DT ˚P1 plumbed together according to the A`´1 Dynkin diagram,
where the symplectic form on each factor is as above. Therefore, each exceptional sphere has
symplectic area 2π. Putting this all together, the symplectic form we work with on the total space
has cohomology class

rωs “ ´π
`2

4
PDpC `

2
q ´

`
2

´1
ÿ

r“1

rπp` ´ rqpPDpCrq ` PDpC`´rqq (17)

6Recall that a resolution π : rX Ñ X is crepant if π˚KX “ K
ĂX .
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for ` even, and

rωs “ ´

`´1
2

ÿ

r“1

rπp` ´ rqpPDpCrq ` PDpC`´rqq (18)

for ` odd, where Cr are the exceptional spheres. It goes back to work of Brieskorn, [Bri66], that
the Milnor fibre and minimal resolution of an ADE singularity are diffeomorphic (in fact, work of
Ohta–Ono, [OO05], show that there is a unique diffeomorphism type for symplectic fillings of the
link of a simple singularity). On the other hand, they are very different as symplectic manifolds –
the standard symplectic form on the Milnor fibre is exact. In this work, we insist on equipping the
total space rX with the symplectic structure as above.

3.2. Equivariant Morsifications. In the introduction, we stated that we are associating a Fukaya–
Seidel category to a specific equivariant Morsification of the superpotential. In this subsection, we
justify this definition.
The Fukaya–Seidel category for a hypersurface singularity, as defined in [Sei08], is independent of
all choices, up to derived equivalence. In particular, it is independent of the choice of Morsification.
We would like to be able to make the same statement about equivariant Morsifications; however,
it quickly becomes clear that, whilst Morsifications abound, equivariant Morsifications are quite
special. In particular, it is easy to cook up examples of superpotentials which have no equivariant
Morsifications. The following seems to be the simplest such example.

Example 3.1. Let qw “ x4 ` y4 : C2 Ñ C and G “ xα, β| α2 “ β2 “ pαβq2 “ ´1y Ď SLp2,Cq.
Concretely G, acts on C2 via

α “

ˆ

ε 0
0 ε´1

˙

, β “

ˆ

0 1
´1 0

˙

,

where ε is a fixed 4-th root of unity. The invariant polynomials are u “ x5y ´ xy5, v “ x4 ` y4

and w “ x2y2, and adding any combination of u, v or w does not yield a polynomial with only
non-degenerate critical points. Therefore, qw cannot be equivariantly Morsified.

On the other hand, if equivariant Morsifications exist, it seems reasonable to expect in general
that the resulting category is independent of this choice by a deformation-invariance argument, as
in the non-equivariant case. We avoid questions of this nature in general, and instead demonstrate
this only in the case at hand.
Restricting to the case of ` ą 1, so that we are not in the maximally graded case, one must add
monomials in the Jacobian which are divided by x`, y` or xy in order to equivariantly Morsify qw.
For ` ą 2, it is immediate that adding any linear combination of x` and y` or powers thereof does not
Morsify the polynomial – the critical point at the origin remains degenerate. On the other hand, the
origin is a non-degenerate critical point for any deformation of qw where we add any linear combi-
nation of x`, y`, xy or higher powers, provided the coefficient of xy is non-trivial. In particular, any
equivariant Morsification of qw is a further deformation of the resonant Morsification qwε. For ` “ 2,
one can now also equivariantly Morsify by adding ε1x

2 ` ε2y
2 for εi ‰ 0, although this can similarly

be deformed through polynomials with non-degenerate critical points to the resonant Morsification.
Therefore, the space of equivariant Morsifications is path-connected, and the resulting categories
will be derived equivalent by a deformation invariance argument, as in the non-equivariant case. We
therefore feel justified in defining FSp q

rwεq to be the Fukaya–Seidel category associated q

rw.
The second subtle point of defining the orbifold Fukaya–Seidel category of an equivariant Morsi-
fication is the order of pulling back and deforming the polynomial. In this paper, we will insist
on equivariantly Morsifying and then pulling back. The reason is that, if one were to pull back qw
(without Morsifying), then the exceptional locus would be critical. It therefore doesn’t seem to make
sense to ‘Morsify’, since this would imply that this critical locus splits into a Milnor number’s worth
of critical points. Even if one were to ignore this and deform the superpotential, only requiring
that it becomes non-degenerate on each chart and that this patches together to something globally
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defined, this is equivalent to pulling back a superpotential on X which comes from an equivariant
Morsification.

3.3. Definition of the Fukaya–Seidel category for a non-exact total space. Whilst the
A–model strategy follows that of [HS20], there are technical subtleties in this setting due to the
non-exactness. In particular, the exactness of the total space is key in the construction of the
Fukaya–Seidel category in [Sei08] by ruling out sphere and disc bubbling. Since our total space is
non-exact, we follow the strategy of [AKO08, Section 3], who also allow for non-exact total spaces
and Lagrangians by demanding the following two conditions:

(i) The smooth fibre Σ is exact,
(ii) The homotopy group π2pΣq and the relative homotopy group π2pΣ, Viq, for any (potentially

non-exact) vanishing cycle Vi, vanish.
These conditions are both fulfilled in our case. The first requirement follows from the fact that the
fibre is a punctured surface, and so every two-form is exact. The vanishing of π2pΣq follows from
the uniformisation theorem for Riemann surfaces, whilst nontrivial π2pΣ, Viq implies that Vi is triv-
ial in homology. In our construction, we only consider Lagrangians which are nontrivial in homology.

Another subtlety about working with a non-exact total space is that we must work over the
Novikov field, defined as

ΛC :“ t
ÿ

iě1

aiT
λi | ai P C, λi P R, lim

iÑ8
λi Ñ 8u.

In general, this is crucial for two reasons. The first is that there can be infinitely many discs con-
tributing to a given A8 operation, and the sum is not guaranteed to converge. As a consequence of
Gromov compactness, the sum converges in the Novikov field. Fortunately, we will see that this is
not an issue for us, since the only non-trivial operation is the product, and there are only finitely
many discs contributing to this.
The second crucial consequence of working over the Novikov field is Hamiltonian invariance. Even
when sums converge, it is possible to lose Hamiltonian invariance when specialising the Novikov
parameter. The essential point is that TA “ TB if and only if A “ B, but the multivalued-ness of
the complex logarithm means that zA “ zB does not imply A “ B for any z P C unless one were to
restrict the values of A and B so as not to cross the branch locus. This is what we do, only checking
that Hamiltonian invariance is preserved between Lagrangians which we are allowing as objects in
our category, rather than any possible Lagrangian.

Another technical point which can’t be handled as in the maximally graded case is that, in order
for the construction of the Fukaya–Seidel category to be well-defined, we need there to be a complete
Kähler metric on the total space, with respect to which the gradient flow of q

rw is bounded from below
outside of a compact set. In the maximally graded setting, this follows from the polynomials being
tame in the sense of [Bro88, Proposition 3.11], however, this no longer applies directly, since the
total space in the case at hand is not Cn. Nevertheless, we can appeal to the tameness of invertible
polynomials to demonstrate that |∇q

rw| is bounded from below outside of a compact set.
Observe that, by construction, we have an isomorphism pC2zD2q{

qΓ » rXzU , where D2 is a small disc
centred at the origin in C2, and U is a tubular neighbourhood of the exceptional locus in rX. Since
qw : C2 Ñ C is tame, it remains so when it descends to pC2zD2q{

qΓ since the action of qΓ is free away
from the origin. By the above isomorphism, this shows that |∇q

rw| is bounded from below on rXzU
with respect to the metric induced from the blow-up construction (which agrees with the metric on
pC2zD2q{

qΓ away from the exceptional locus).

To summarise, we have that q

rwε : rX Ñ C defines a Lefschetz fibration. We take A
qΓ

to be a
collection of Lagrangian branes in the smooth fibre (which is well-defined by the preceding para-
graph), and check that Hamiltonian invariance is preserved between these branes for a given choice
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of Novikov parameter specialisation. We then define, as in [AKO08], the Fukaya–Seidel category
(over C) as FSp q

rwq :“ TwA
qΓ
.

3.4. A resonant Morsification. In the maximally graded case studied in [HS20, Section 3], a
Morsification qwε “ x̌py̌` y̌qx̌´εx̌y̌ with particularly nice properties was used. Such a Morsification
was called resonant, and allowed the symmetry present to be maintained and ultimately exploited.
Whilst it was not considered in the maximally graded setting, the resonant Morsifications are in
fact also equivariant for any qΓ » µ`. Therefore, such a Morsification descends to a map qwε : X Ñ C
given by

qwεpu, v, wq “ wpu
p´1
` ` v

q´1
` ´ εq.

Pulling this back to the chart rXi » C2
pλi,µiq

of the crepant resolution rX yields

q

rwi,εpλi, µiq “ λiµipλ
ipp´1q

`
i µ

pi´1qpp´1q

`
i ` λ

p`´iqpq´1q

`
i µ

p``1´iqpq´1q

`
i ´ εq

and this patches together to give a globally defined map q

rwε : rX Ñ C. From now on, we will refer
to the restrictions of q

rwε to the charts as q

rwi, with the reference to ε left implicit.

Analogously to the maximally graded case, the critical points of q

rwε can be grouped into four
types:

(i) µ1 “ 0, λ
p´1
`

1 “ ε

(ii) µ
q´1
`

` “ ε, λ` “ 0
(iii) µi “ λi “ 0 for i “ 1, . . . , `

(iv) λ
p´1
`

1 “
q´1
pq´1ε, λ

p`´1qpq´1q

`
1 µq´1

1 “
p´1
pq´1ε.

Note that the critical points of type (iv) can equivalently be described in any of the charts of rX;
we have given them in the first for convenience. The critical points in the first three groups have
critical value 0, whilst those in the last have critical value

´εµ1λ1

pq ´ 1
.

As in our previous work, there is a clear symmetry of these critical points. Namely, let pλ`
1,crit, µ

`
1,critq

be the unique positive real critical point of type (iv) in the chart rX1, with corresponding critical
value ccrit. Letting ζ and η denote the roots of unity

ζ “ e2πi{pp´1q and η “ e2πi{pq´1q, (19)
we see that there is a µp´1 ˆ µq´1 action on the critical points of type (iv) given by

tpζm`λ`
1,crit, ζ

mp1´`qηnµ`
1,critq : 0 ď m ď p ´ 2, 0 ď n ď q ´ 2u.

The critical value corresponding to pζm`λ`
1,crit, ζ

mp1´`qηnµ`
1,critqq is ζmηnccrit, so there are gcdpp´1,q´1q

`

critical points in each of these critical fibres. In order to describe each critical point of type (iv)
uniquely with respect to the symmetry and the reference critical point, we restrict to the subset

tpζm`λ`
1,crit, ζ

mp1´`qηnµ`
1,critq : 0 ď m ď

p ´ 1

`
´ 1, 0 ď n ď q ´ 2u. (20)

We do not require this to be a subgroup or have any other additional structure – all we require is
that this is a collection of elements in µp´1 ˆµq´1 such that each point in this collection corresponds
to a critical point of type (iv).

Remark 3.2. Whilst it appears that we are making a choice in the above, choosing different elements
of µp´1 ˆ µq´1 leads to on-the-nose the same result, analogously to Remark 2.10 on the B–side.
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Our strategy for understanding the Fukaya–Seidel category of q

rwε is essentially modelled on the
strategy of the maximally graded case. Namely, we fix our regular fibre Σ to be q

rw´1
1 p´δq where δ

is a positive real number much less than ε (in other words, we take ˚ “ ´δ). This reference fibre
is equivalently described in any of the charts, and is equivalent to the quotient of the Milnor fibre
of qw by qΓ, as studied in [Hab21, Section 6.1]. For the critical points of types (i)–(iii) we follow the
strategy employed in the maximally graded case and define the vanishing path given by the straight
line segment from ´δ to 0. For the critical point pζm`λ`

1,crit, ζ
mp1´`qηnµ`

1,critq, meanwhile, we define
the preliminary vanishing path γm,n by following the circular arc ´δeiθ as θ increases from 0 to

θm,n :“ 2π

ˆ

m

p ´ 1
`

n

q ´ 1

˙

and then following the radial straight line segment from ´ζmηnδ to ζmηnccrit. The preliminary
vanishing paths are then altered to the temporary, and then final, vanishing paths in the same way
as the maximally graded case.

3.5. The zero-fibre and its smoothing. The fibre of q

rwε over zero has ` ` 2 components: in the
charts rX1 and rX`, there are the line tµ1 “ 0u and tλ` “ 0u, respectively. The complex lines p0, µiq

and pλi`1, 0q patch together to give ` ´ 1 projective lines in an A`´1 configuration. Finally, there is
the curve given in local charts by qwi “ q

rwiλ
´1
i µ´1

i . This fibre is sketched in Fig. 4.

Figure 4. Sketch of the fibre of q

rwε above the origin. This does not represent any
specific polynomial, and is only meant to convey the general shape. See Fig. 7 for a
specific example.

Upon smoothing to q

rw´1
ε p´δq, each of the nodes is smoothed to a thin neck whose waist curve is

the corresponding vanishing cycle in Σ. We denote these vanishing cycles by mVµ1 qw1
, nVλ` qw`

and
Vµiλi

for m “ 0, . . . , p´1
` ´ 1, n “ 0, . . . , q´1

` ´ 1 and i “ 1, . . . , `, corresponding to critical points7

pζm` p´1
`
?
ε, 0q, p0, ηn`

q´1
`
?
εq and pλi, µiq “ p0, 0q respectively8.

Remark 3.3. The topology of the smooth fibre was computed in [Hab21, Section 6.1]. Namely, it is
a curve of genus

gpΣq “
1

2`
ppq ´ 1 ´ gcdp`pp ´ 1q, p ` q ´ 2qq

7 p´1
`
?
ε, q´1

`
?
ε are the real roots.

8The symmetry of the critical points given in (20) is in the chart rX1. In order to to see the symmetry in another
chart, one must compose it with the transition function. In particular, the symmetry for the critical points of type
(ii) must be computed in the chart rX`, where the action is as given here, rather than in (20).
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with

2 ` gcdpp ´ 1,
p ` q ´ 2

`
q

boundary punctures. Note that this could also have be deduced in the same way as in [HS20,
Remark 3.1], although, since the Vµiλi

are homologous, the rank of H1pΣ;Zq is pq´1
` `1, rather than

pq´1
` ` `.

As in our previous work, we argue that the monodromy of parallel transport around an arc of
small enough radius δ is supported in the neck regions which emerge upon smoothing, and is the
product of (partial) Dehn twists in these regions. After deleting these regions of Σ to obtain Σ1,
we may trivialise the fibration q

rwε over the disc of radius δ such that the smooth fibre is given by
Σ1. See Fig. 5 for a sketch of the complement of the neck regions. Concretely, Σ1 comprises: the
λ1-axis (so µ1 “ 0) with small discs removed around the p´1

` -th roots of ε, as well at the origin,
the µ1-hyperplane with the a disc around the origin removed, the hyperplanes µi “ 0 and λi “ 0 in
each chart rXi » C2

pλi,µiq
for i “ 2, . . . , ` ´ 1, with a small disc around the origin and infinity in each

removed9, the µ`-axis (λ` “ 0) with small discs around the q´1
` -th roots of ε and the origin in this

chart removed, the µ` “ 0 complex line with the origin removed, and, lastly a pp´1qpq´1q

` -fold cover
of the line tu ` v “ εu with small discs around pε, 0q and p0, εq removed. Here, the covering map

is given in the chart rXi by pλi, µiq ÞÑ pλ
ipp´1q

`
i µ

pi´1qpp´1q

`
i , λ

p`´iqpq´1q

`
i µ

p``1´iqpq´1q

`
i q, although it is most

convenient to consider it in the first or last charts, where the fact that it is a pp´1qpq´1q

` -fold cover
becomes obvious. See Fig. 5 for a sketch of what the fibre appearing in Fig. 4 looks like with the
neck regions removed (ignoring the Lagrangians in this figure for the moment).

Figure 5. Red Lagrangian (alternating dashes and dots) corresponds to the real
vanishing cycle. Blue (dashed) Lagrangian is another vanishing cycle – away from
the neck regions in the exceptional locus, it is just the shift of the real vanishing cycle
by a fixed argument. Light dashes indicate the Lagrangian is on the back side of the
surface.

9We are double counting here, since, for example, the λ2 “ 0 hyperplane with a disc around the origin removed
is biholomorphic to the µ3 “ 0 hyperplane in rX3 with a disc around the origin removed. We have done this to be
explicit about what is visible in each chart, rather than providing a minimal description of Σ1.
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3.6. The preliminary vanishing cycles. Let m,nV pr
0 denote the preliminary vanishing cycle in Σ

corresponding to the critical point pζm`λ`
1,crit, ζ

mp1´`qηnµ`
1,critq and the preliminary vanishing path

γm,n. In this subsection we explain the necessary alterations to the arguments in the maximally
graded case required in order to describe these cycles.

Remark 3.4. Before moving on to our argument, we would like to remind the reader that the critical
points of type (iv) are visible in any chart. It would therefore be equivalent to work in any chart
when studying the vanishing cycles corresponding to these critical points, and we choose to work in
the chart rX1.

Since q

rwε has real coefficients in a given chart, we can temporarily view it as a map R2 Ñ R.
In the chart rX1, this function has a local minimum at pλ`

1,crit, µ
`
1,critq, where it attains the value

ccrit ă 0. There are no critical values in the interval pccrit, 0q, so the level sets q

rw´1
1 pcq for c in this

range have a component which is a smooth loop encircling pλ`
1,crit, µ

`
1,critq, and which shrinks down

to this point as c Œ ccrit. As c Õ 0 this loop, which we denote by Λc, converges to a piecewise
smooth curve, Λ0, whose segments are given in the chart rXi by the µi “ 0, λi “ 0 and qwi “ ε

(recall that qwi “ q

rwiλ
´1
i µ´1

i ). It is worth reiterating that the curve qwi only intersects the coordinate
hyperplanes of a given chart in the fibre over the origin only when i “ 1, `, where it intersects µ1 “ 0
and λ` “ 0, respectively.

Returning to the full complex picture, we exploit the symmetry of the situation, as well as the fact
that the monodromy of parallel transport around a small arc centred at the origin is supported in the
discs which are removed to give Σ1. In particular, our main task is to understand the monodromy in
these regions. Fortunately, by taking ε sufficiently small, the symplectic form can be made arbitrarily
close to

i

2
pdλi ^ dλ̄i ` dµi ^ dµ̄iq

in the neck regions, meaning that only a minor adaptation of the parallel transport arguments of
the maximally graded case is required. Namely, over a path cptq contained in a neck region where
the symplectic form is as above, symplectic parallel transport between the fibres of q

rwε is described
by the ODE

ˆ

9λi

9µi

˙

“
9c

|dq

rwi|
2

˜

Bλi
q

rwi

Bµi
q

rwi

¸

. (21)

This equation clearly preserves the real part of the equation along the path which follows the neg-
ative real axis. Therefore, the loops Λc are taken to each other by parallel transport, and the loop
Λ´δ is the preliminary vanishing cycle 0,0V0

pr.

Since parallel transport only affects the part of the curve which passes through the neck region,
where the monodromy is contained, we are able to use the local description of the symplectic form
in each neck region and patch the result together. In particular, how the curve is identified between
patches is unaffected by parallel transport, since this identification happens away from the neck
regions. Moreover, away from the neck regions, the curve 0,0V0

pr is particularly simple to describe:
in the λ1-axis of rX1, it comprises the real line segment joining the deleted disc at the origin to
the deleted disc about the real p´1

` ´ th root of ε, and in the µ1-projection, it is the straight line
emanating from the deleted disc at the origin and going to infinity along the positive real axis. In
both the λi and µi projections in the charts rXi for i “ 2, . . . , `´1, as well as the λ` projection in rX`,
it is similarly the straight line emanating from the deleted disc at the origin and going to infinity
along the positive real axis. In the µ`-projection in the chart rX` it is the straight line segment
joining the deleted disc at the origin to the real q´1

` ´ th root of ε in the µ`-line. Finally, the rest of
the curve is the positive real lift of the line segment joining the deleted discs about pε, 0q and p0, εq

in tu ` v “ εu under the covering map described above. A sketch of this real Lagrangian vanishing
cycle away from the neck regions is given in Fig. 5. It is straightforward to check that, in each of
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the neck regions, the curve 0,0V0
pr is given by a hyperbola. For example, near the origin in the chart

rX1, it is given by
pλ1, µ1q “

a

δ{εpes, e´sq (22)
where s is a small real variable.

Now that we understand the real vanishing cycle 0,0V0
pr, we utilise the symmetry present in the

situation to characterise m,nV0
pr. As before, we decompose γm,n into its radial segment from ´ζmηnδ

to ζmηnccrit and circular segment from ´δ to ´ζmηnδ. By construction, the map
f piq
m,n : rXi Ñ rXi

pλi, µiq ÞÑ pζmp``1´iqηnp1´iqλi, ζ
mpi´`qηinµiq

is a symplectomorphism on each patch with intertwines the transition maps and fits together to
yield a globally defined symplectomorphism fm,n : rX Ñ rX which intertwines the map q

rwε : rX Ñ C.
It is therefore clear that fm,np0,0V0

pr
q is the vanishing cycle corresponding to the straight line

segment from ´ζmηnδ to the critical point10 pζm`λ`
1,crit, ζ

mp1´`qηnµ`
1,critq, and a full description of

m,nV0
pr results from parallel transporting this around the arc from ´ζmηnδ to ´δ. Since the mon-

odromy of parallel transport along such an arc is contained in the neck regions, it is immediate that
m,nV0

pr “ fm,np0,0V0
pr

q in Σ1, where it comprises: the straight line segment in the λ1´line from
the deleted disc about the origin to the deleted disc about the critical point ζm` p´1

`
?
ε (where p´1

`
?
ε

is the real root) and the straight line segment emanating from the deleted disc at the origin with
argument 2π

`mp1´`q
p´1 ` n

q´1

˘

. Similarly, in the λi and µi projections in the chart rXi, the Lagrangian
is given by the straight line segment emanating from the deleted disc at the origin with arguments
2π

`mp``1´iq
p´1 `

np1´iq
q´1

˘

and 2π
`mpi´`q

p´1 ` in
q´1

˘

, respectively. In the λ` projection in the chart rX`, the
Lagrangian is emanating from the deleted disc at the origin with argument 2π

`

m
p´1 `

np1´`q
q´1

˘

, and
in the µ` projection it is given by the straight line segment joining the deleted disc about the origin
to the deleted disc about ηn`

q´1
`
?
ε. Finally, the rest of the curve in Σ1 is given by the lift of the line

segment joining the deleted discs about pε, 0q and p0, εq in tu`v “ εu to the ζm`R` ˆ ζmp1´`qηnR`-
locus in C2 » rX1 under the projection described above. In the complement of the neck regions, a
sketch of such a vanishing cycle is given by the blue (dashed) Lagrangian in Fig. 5. In the neck
regions of Σ, the curve fm,np0,0V0

pr
q is given by a hyperbola of the form (22), and to complete the

description of m,nV0
pr, we must analyse how this changes under parallel transport along the arc from

´ζmηnδ to ´δ through the angle θm,n.

In the neck region about the origin in a given chart, the polynomial q

rwi can be approximated by
´ελiµi. Here, the parallel transport equation (21) becomes

ˆ

9λi

9µi

˙

“
´ 9c

εp|λi|
2 ` |µi|

2q

ˆ

µi

λi

˙

. (23)

Moreover, the ζmp``1´iqηnp1´iqR` ˆ ζmpi´`qηinR`-locus in the Vλiµi
-neck region is approximated by

pλi, µiq “
a

δ{εpζmp``1´iqηnp1´iqes, ζmpi´`qηine´sq.

Studying the solution to parallel transport over the line cptq “ ´δeit as t ranges from θm,n to 0, we
postulate a solution of the form pλi, µiq “

a

δ{εpes`iϕ, e´s`ipt´ϕqq, where ϕ is a real function of s
and t. Plugging this into (23) yields

ˆ

9ϕλi

p1 ´ 9ϕqµi

˙

“
λiµi

|λi|
2 ` |µi|

2

ˆ

µi

λi

˙

.

10We are free the describe the critical points of type (iv) in any chart, so we choose the first chart for simplicity.
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The initial condition is given by

ϕps, θm,nq “ 2π
`mp` ` 1 ´ iq

p ´ 1
`

np1 ´ iq

q ´ 1

˘

,

and so the general solution is calculated to be

ϕps, tq “ 2π
`mp` ` 1 ´ iq

p ´ 1
`

np1 ´ iq

q ´ 1

˘

`
e´2spt ´ θm,nq

e2s ` e´2s
.

in particular, the value of the function at the end of the parallel transport is given by

ϕps, 0q “ 2π
`mp` ` 1 ´ iq

p ´ 1
`

np1 ´ iq

q ´ 1

˘

`
´e´2sθm,n

e2s ` e´2s

“
2π

e2s ` e´2s

´mp` ` 1 ´ iqe2s ` mp` ´ iqe´2s

p ´ 1
`

np1 ´ iqe2s ´ ine´2s

q ´ 1

¯

.

This describes the argument of the λi-component of m,nV0
pr (or the negative of the µi-component),

and is in agreement with our expectation: as s Ñ 8 this neck region joins the λi-axis, where we
know that the λi-component of m,nV0

pr has argument 2π
`mp``1´iq

p´1 `
np1´iq
q´1

˘

. Similarly, as s Ñ ´8,
this neck region joins the µi-axis, where we know that the negative of the µi-component of m,nV0

pr

has argument 2π
`mp`´iq

p´1 ´ in
q´1

˘

. Note that arg λ1 “ arg λ2 “ ¨ ¨ ¨ “ arg λ`, and similarly for the
arguments of µi. We therefore see that, if we view the smooth fibre as being glued from cylinders
as in [Hab22, Section 3.2] and coordinatise the middle cylinder as upwards11 being in the positive
λi direction, that the Lagrangian m,nV0 enters the middle cylinder with λ` argument ´2π`n

q´1 from
the left (which we are thinking of as being the `th neck region), and winds upwards – increasing the
argument of λi – by 2π`m

p´1 ` 2π`n
q´1 degrees to exit the right hand side of the cylinder (the first neck

region) at 2π`m
p´1 degrees. Whilst more modification is needed to reach the final configuration for our

collection of vanishing cycles, this winding is visible in the central cylinder of Fig. 6.

Remark 3.5. It should be emphasised that Fig. 6 is just the ribbon graph associated to the basis
of homology given by the exact Lagrangians, together with one of the non-exact Lagrangians. It
doesn’t matter which non-exact Lagrangian one picks to form this graph, since they all represent
the same homology class and will result in the same diagram. This is convenient since one can view
the neck regions where there is monodromy as neighbourhoods of Lagrangians in order to depict
the winding in these regions.

In order to fully describe the curve m,nV0
pr in the smooth fibre, we run analogous arguments about

the other neck regions in which the Lagrangian passes – namely, the discs deleted about the point
ζm` p´1

`
?
ε on the λ1-axes and the point ηn`

p´1
`
?
ε on the µ`-axis. In the neck region corresponding

to mVµ1 qw1
we run the same argument as above, but this time with local coordinate λ1

1, where λ1 “

ζm`λ`
1,crit ´ λ1

1, and in this case it is the coordinate λ1
1 which interpolates from 2π`m

p´1 to 2π
`mp`´1q

p´1 ´

in
q´1

˘

. The analogous statement is true about the neck corresponding to nVλ` qw`
. Moreover, the

t qwi “ εu part of the curve is essentially uninteresting, since the corresponding components of the
different m,nV0

pr in this segment are different lifts of the same segment in tu ` v “ εu.

Remark 3.6. It should be noted that the Lagrangians in Fig. 6 wind a fixed amount in each neck
region, not just those in the middle cylinder; however, the Lagrangians do not intersect in any other
region. For example, working right-to-left in this figure, 1,1V0 enters the left cylinder lower than 0,1V0

and also winds more in the downwards direction. Indeed, the Hamiltonian isotopies were precisely
chosen so that all intersections between i,jV0 happen in the central cylinder. We have therefore
suppressed this winding in the left and right annuli so as to not obfuscate the more important point
that there will be a relation for the Floer product.

11Note that we have reversed the orientation of the diagram in comparison to [Hab22, Figure 2] so that the
orientation of the surface agrees with the orientation of the page.
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Remark 3.7. From the above description, it is clear that the analogue of [HS20, Remark 3.2] holds.
Namely, for two Lagrangians m,nV0 and M,NV0 with 0 ă m ´ M ă

p´1
` and κ q´1

` ă n ´ N ă

pκ`1q
q´1
` , the difference in λi arguments varies monotonically from ´2πpn´Nq`{pq´1q to 2πpm´

Mq`{pp ´ 1q. The second term is strictly positive, and the first satisfies 2πpκ ` 1q ă ´2πpn ´

Nq`{pq ´ 1q ă ´2πκ, so the arguments of these two curves are equal modulo 2π precisely κ ` 1
times. In addition, they intersect transversally at each of these points. In analogy with Lemma 2.7,
we also do not only have morphisms when 0 ă m ´ M ă

p´1
` : when 0 ă M ´ m ă

p´1
` and

κ q´1
` ă n ´ N ă pκ ` 1q

q´1
` for κ ě 1, there are precisely κ transverse intersection.

3.7. Modifying the vanishing paths. As in [HS20, Section 3.4], the vanishing paths constructed
above do not form a distinguished basis; indeed, the paths not only intersect, but do so along
segments. Fortunately, the argument of loc. cit. used to circumvent this issue can be adapted to
this setting. Namely, we perturb the vanishing paths γm,n slightly to γ1

m,n so that they no longer
intersect along their radial segments. In addition, for those vanishing cycles whose corresponding
vanishing path has radial segment greater than than 2π we alter the vanishing paths to go outside
of the critical points to form γ2

m,n, although it can be shown in the same way as [HS20, Lemma
3.3] that this alteration has no effect on the corresponding vanishing cycle. Finally, we perturb the
fibration slightly to separate the vanishing paths going to the origin, as well as those whose critical
points correspond to the same critical value. This is summarised in the following proposition, whose
proof follows mutatis mutandis from that of the maximally graded case given in [HS20, Proposition
3.4].

Proposition 3.8. There exists a perturbation of q

rwε and a distinguished basis of vanishing paths such
that the corresponding vanishing cycles are arbitrarily small perturbations of the m,nV pr

0 , mVµ1 qw1
,

nVλ` qw`
and Vλiµi

for 0 ď m,M ď
p´1
` ´ 1, 0 ď n,N ď q ´ 2 as constructed above. The m,nV pr

0 are
ordered by decreasing value of θm,n, and by choosing the starting direction for our clockwise ordering
to be eiθ, for θ a small positive angle, they occur before all of the other vanishing cycles. �

3.8. Isotoping the vanishing cycles and computing the morphisms. Now that we have con-
structed a distinguish basis of vanishing paths, we must compute the relevant Floer cohomology
groups. In order to do this, we must Hamiltonian isotope the Lagrangians in the smooth fibre so
that they intersect transversally. Fortunately, two Lagrangians only intersect non-transversally in
the case of m,nV0 and M,NV0 where m “ M or n ” N mod q´1

` , where they intersect along segments.
This is clear from the description of m,nV0 and M,NV0 in Σ1 as fm,np0,0V0q and fM,N p0,0V0q, respec-
tively. After describing the relevant perturbations, we will have constructed the final vanishing
cycles, denoted by A

qΓ
.

We begin by describing the isotopies of the Lagrangians on the λ1-axis. Namely, to achieve
transversality, we isotope each m,nV0 anticlockwise in the λ1 direction between the two necks by an
amount proportional to n, correspondingly altering the curve at the boundaries of the neck region to
keep the curve continuous. To make this isotopy Hamiltonian, we push the curve the corresponding
amount in the clockwise direction around the Vλ1µ1 neck region. The picture in this case is essentially
[HS20, Figure 8].
To achieve transversality in the µ` line, we perform essentially the same procedure as above, and
of that in the maximally graded case; however, here we isotope the curves in the anticlockwise µ`

direction by an amount proportional to m `
p´1
` t n`

q´1 u in the region between the two necks, and
then the curve is pushed clockwise in the Vλ`µ`

neck region to compensate and make the isotopy
Hamiltonian. See Figure 6 for an example12, where we present the surface as being glued from
cylinders.

12The construction of this smooth fibre from gluing cylinders and strips is not the one given in [Hab21, Section
6.1], although is equivalent to this, since it results from a different choice representative of nodes in the construction
of the quotient ribbon graph in loc. cit.
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0,0V0 “
1,0V0 “

0,1V0 “
1,1V0 “

Figure 6. Smooth fibre for qw “ x5y ` y3x with ` “ 2 as being glued from cylinders
– top and bottom of each cylinder are identified. This is a genus three surface with
three boundary punctures. Vanishing cycles and spin structures are shown. The light
green (big) and light blue (small) triangles contribute to the relation corresponding
to (iii) in Fig. 1. The analogue of Fig. 4 in this situation is Fig. 7.

Figure 7. The analogue of Fig. 4 for qw “ x5y ` y3x with ` “ 2. In particular,
the vertical Lagrangians in Fig. 6 are contracted to the intersection points of the
irreducible components in this figure as one goes from the reference point to the
origin along the negative real axis.

The resulting set of vanishing cycles, m,nV0, are then pairwise disjoint, except on the Vλiµi
neck

regions, where they are either disjoint or intersect transversally. Moreover, we will see momentarily
that all of these intersection points are graded in degree 0, meaning that the differential on the Floer
complex vanishes, and all intersection points survive to cohomology. Once this has been shown, it
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is then straightforward to see that, additively, the objects in A
qΓ

match that of B via
m,nV0 Ø i,jK0

mVµ` qw Ø iKxr3s

nVλ1 qw Ø jKyr3s

Vλkµk
Ø Kwr r3s

with
i ` m “ p ´ 1

j ` n “ q ´ 1

r ` k “ `.

(24)

Note that, in the above, the last identification is taken modulo `, so that Vλ`µ`
is identified with

Kw`
r3s. All that is left to do to complete the theorem in the undeformed case is show that the

objects are graded, so that the corresponding Floer complexes are graded, and then check that the
morphisms compose in the claimed way.

3.9. Brane structures. In this subsection, we specify the brane structure on the Lagrangians we
consider by determining a grading and spin structure. This discussion is also valid for Section 5 and
Section 6.2.
By construction, the morphisms in the B–model are Z-graded, and here we grade the Lagrangians
so the corresponding Floer cohomology groups will similarly be Z-graded. Recall ([Sei00]) that a
symplectic manifold pM,ωq is gradable if Kb2

M » OM , and a grading is a choice of such trivialisation.
This is possible if and only if 2c1pMq “ 0, and so, in particular, all Calabi–Yau manifolds are
gradable. Given a trivialising section Θ P ΓpM,Kb2

M q, there is a map
αM : LGrpTMq Ñ S1

Lm ÞÑ argpΘ|Lmq.

For any Lagrangian L ãÑ M , there is a natural map L Ñ LGrpTMq given by taking the class of the
tangent space of L at each point, and we say that L is gradable with respect to the grading on M

if the map L Ñ LGrpTMq
αM
ÝÝÑ S1 » R{Z lifts to a map α#

L : L Ñ R. This is possible if and only if
the Maslov class of L vanishes, i.e. the map L Ñ S1 is homotopic to the constant map.
For Σ a real 2-dimensional manifold, i.e. a surface, gradings correspond naturally to line fields
[Sei08, Section 13(c)], meaning a section of PRpTΣq » LGrpTΣq. Given a line field η grading Σ, a
Lagrangian γ : S1 Ñ Σ is gradable with respect to this line field if and only if γ˚η and γ˚TL are
homotopic in γ˚PRpTΣq. Given a graded surface Σ with two graded Lagrangians α#

Li
: Li Ñ R for

i “ 0, 1, [Sei08, Example 11.20] shows that a transverse intersection point x P L0&L1 has degree

tα#
L1

pxq ´ α#
L0

pxqu ` 1

in CF ˚pL0, L1q.

In our situation, the required choice of grading is the one which restricts to Σ from the grading
of rX. By the crepancy of the resolution π, this has vanishing first Chern class, and, since rX is
diffeomorphic to the Milnor fibre of x2 ` y2 ` z`, its homotopy type is a bouquet of 2-spheres. This
implies that rX has vanishing first cohomology, and so, in particular, there is a unique choice of
trivialisation of Kb2

rX
up to homotopy13. We are therefore justified in the use of the definite article

when talking about gradings of rX. Restricting the trivialisation of Kb2
rX

to Σ uniquely determines
a line field on Σ with respect to which our Lagrangians are gradable. Conversely, any line field
with respect to which each vanishing cycle is gradable is homotopic to the one which cones from
restricting the trivialisation of Kb2

rX
. This uses the more general fact that, if one has a collection of

Lagrangians on a surface which spans the first homology, then there is a unique homotopy class of
line field with respect to which this collection is gradable – cf. [LP20, Section 1].
That these Lagrangians are gradable means that the argument between the line field and the pro-
jectivised tangent direction of a given Lagrangian is within a sufficiently small range. For example,
in the presentation of the smooth fibre as being glued from annuli as in Fig. 6, the line field can be

13If Kb2
ĂX

» O
ĂX the homotopy classes of trivialisations form a torsor for H1

p rXq.
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taken to be approximately horizontal on each annulus and approximately parallel to the boundary
along each attaching strip. This is proven in [Hab21, Section 6.1]; however, in this case, it also
follows from the fact the Lagrangians are clearly gradable with respect to this line field, together
with the above fact about uniqueness of line fields.

As in the maximally graded case, we can grade the Lagrangians such that α#
Li

is valued between
0 and 1{2. Moreover, if i ą j in the ordering on the vanishing cycles given in Proposition 3.8, then
1{2 ą α#

Li
ą α#

Lj
ą 0, and so all intersection points are graded in degree zero.

Now that we have fixed a grading, in which all intersection points are in degree zero, we discuss spin
structures and the consequences for signs. We refer to [Sei08, Chapter II, Section 11] and [AKO08,
Section 4.6] for more details, where the latter reference also deals with non-exact Lagrangians. In the
case at hand, spin structures on S1 are given by double covers, of which there are two – the trivial
and non-trivial. Since the data of the Lagrangian brane in the Milnor fibre must be the restriction of
brane data from the thimble, we insist on equipping our Lagrangians with the spin structure which
extends to the thimble, i.e. the non-trivial double cover of S1. In such cases, it is convenient to
record this spin structure by ‹ P L, marking the point where the double cover is ramified. Namely,
the spin structure on L restricted to Lzt‹u is equipped with a fixed trivialisation. It does not matter
where one chooses the star recording the spin structure to be, as long as it is not at an intersection
point with another Lagrangian. For the Lagrangians corresponding to critical points whose critical
value is the origin, we take the star to be anywhere away from an intersection point with another
Lagrangian. For all other Lagrangians, we take the stars recording the spin structure to be away
from any intersections and discs contributing to the product (i.e. on the sections of the Lagrangians
which are lifts of the line tu ` v “ εu by the pp´1qpq´1q

` -fold cover).
In our case, where all morphisms are graded in degree zero, the sign contribution for a holomorphic
disc u with convex corners Lij&Lij`1 (with the indices counted cyclically) contributing to µk is

p´1qνpuq,

where νpuq is the number of stars on the boundary. In general, one must also take into account
the degrees of the intersection points, as well as the orientation of the boundary of u with respect
to the orientation of the Lij . It should therefore be reiterated that that this sign count is specific
to our situation (or, more generally, where all morphisms are graded in even degree). Moreover,
the (non-)exactness of the symplectic form or Lagrangian vanishing cycles does not play a role in
determining these signs.

3.10. Composition and completion of proof. Suppose L0, L1 and L2 are three (final) vanishing
cycles such that L0 ă L1 ă L2 with respect to the ordering on the category A

qΓ
(we are calling them

L rather than V to avoid conflict with our earlier notation for specific cycles). We need to compute
the composition

HF ˚pL1, L2q b HF ˚pL0, L1q Ñ HF ˚pL0, L2q, (25)
which is defined by counting pseudo-holomorphic triangles, and Seidel [Sei08, Section (13b)] shows
that, in the exact setting, this can be done combinatorially by counting triangular regions bounded
by the Li. In our non-exact setting, the assumptions of Section 3.1 ensure that the situation at
hand is similarly combinatorial.

By the ordering on the vanishing cycles, the only possibility for (25) to be non zero is if L0 “ m,nV0

and L1 “ M,NV0 where either m ě M and n ě N or M ă m and n ě N `
q´1
` . There are then four

possibilities for L2 which would potentially give a non-zero composition:
(i) L2 “ Vλrµr for some i “ 1, . . . , `,
(ii) L2 “ tVλ1 qw, for t ” n mod q´1

`
(iii) L2 “ mVµ` qw,
(iv) L2 “ r,sV0 for some pr, sq ‰ pM,Nq and either
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(a) M ě r and N ě s, or
(b) M ă r and N ě s `

q´1
` .

In the cases (ii) and (iii), there is a single obvious holomorphic disc contributing to the product,
regardless of the ranks of the cohomology groups, and this is shown to be the only such disc by the
same methods as in the maximally graded case. In case (iv), all Lagrangians involved are exact, so
the product only depends on the intersection points of the Lagrangians, with signs determined by
the gradings on the Lagrangians as well as the spin structures. Since we have chosen these to be
away from any holomorphic discs contributing to the product, all signs are `1. Moreover, all of the
Lagrangians in these cases are exact, and so one can work over C, rather than the Novikov field,
simply by rescaling. The remaining case, in contrast, is more complicated.

In case (i), there are rankCHF ˚pm,nV0,
M,NV0q holomorphic triangles contributing to (25), where

the output of each is a scalar multiple of the intersection point M,NV0&Vλrµr . The fact that these
are all such maps follows from the same argument as in the maximally graded case, although
where LY is now three circles, one of which intersects the other two circles once, and two circles
intersect each other rankCHF ˚pm,nV0,

M,NV0q times. The composition argument follows as in the
maximally graded case when rankCHF ˚pm,nV0,

M,NV0q “ 1. On the other hand, consider the case
where rankCHF ˚pm,nV0,

M,NV0q “ 2. Then, m ě M `
p´1
` , n ě N , and, without loss of generality,

consider L0 “
p´1
`

,0V0, L1 “ 0,0V0 and L2 “ Vλrµr . Then,

HF ˚pL0, L1q “ spanΛCtx
p´1
` , y

q´1
` u,

but HF ˚pL0, L2q “ spanΛCtqku, and so there must be a relation. Note that we must work over the
Novikov field here to account for L2 being potentially non-exact14

Since the symplectic form ωΣ “ ω|Σ is exact on fibres, let λ be a fixed primitive of this form.
Then, the contributions to (24) are:

cr b x
p´1
` ÞÑ ˘Tωpru1sqqr (26)

cr b y
q´1
` ÞÑ ¯Tωpru2sqqr, (27)

where ui is a contributing holomorphic triangle and HF ˚pL1, L2q “ spanΛCtcru. Since all inter-
section points can be taken to be in degree zero, the sign is determined purely by how many stars
recording spin structures the boundary of the relevant disc passes through. As already mentioned,
we arrange for all the stars recording the spin structures of the exact Lagrangians to be away from
any holomorphic discs, and so, once we have graded the Lagrangians in question, only the spin
structure of L2 can affect the sign. Regardless of where this star is chosen, exactly one boundary
component of u1 or u2 can pass through it, and so the signs of (26) and (27) are opposite – cf. Fig. 6.

Now, since L2 is the only non-exact Lagrangian in the triangle, observe that ωpruisq “ λprαisq,
where αi is the segment of L2 on the boundary of ui and that α1 ´ α2 “ L2 in homology. Putting
this all together, we see that there is a relation

cr b x
p´1
` ` T λprL2sqcr b y

q´1
` “ 0.

To complete the argument, we must evaluate λprL2sq and then specialise the Novikov parameter.

Towards this end, observe that there is an exact representative of the homology class L2. In the
case of ` even, it is the waist curve half way between15 Vλ `

2
µ `

2

and Vλ `
2 `1

µ `
2 `1

, and in the case of ` odd,

it is Vλ ``1
2

µ ``1
2

. Moreover, let Cr be the r-th curve in the exceptional divisor of rX, and observe that,

14We will see below Vλ l`1
2

µ l`1
2

is exact for ` odd, but it does no harm to include this case in the discussion of

non-exact Lagrangians.
15This corresponds to the equator on the exceptional curve C `

2
above the origin under parallel transport.
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by parallel transport (and the definition of ω on rX), ωprCrsq “ λprVλrµr sq ´ λprVλr`1µr`1sq “ 2π.
By comparing with the reference exact Lagrangian, we have that λprVλrµr sq “ πp` ` 1 ´ 2rq re-
gardless of the parity of `. To see this, note that, for ` odd, λprV ``1

2
sq “ 0 since it is exact. Then,

λprV ``1
2

˘rsq “ ˘2πr since the symplectic area of each holomorphic cylinder between two consecutive
vanishing cycles has area 2π, as demonstrated above. An analogous computation yields the claimed
area in the case of ` even.
Finally, we must specialise the Novikov parameter. To do this, we set T “ e

?
´1
` to obtain the

relation (iii) in Fig. 1 under the identification (24). That this specialisation preserves Hamiltonian
invariance follows from the fact that there is no holomorphic cylinder between two Lagrangians in
our collection which has symplectic area 2π`. The cases of rank higher than two then follow by
composition relations which have already been established.

Now that we have set it up, the proof of the main theorem in the loop case follows the same
argument as in [HS20, Theorem 1].

Theorem 3.9 (Theorem 1, undeformed loop polynomial case). Under (24), the Z-graded A8-
category A

qΓ
is described by the quiver with relations in Figure 1 and is formal. In particular, by

Theorem 2.8 it is quasi-equivalent to B, and hence there is an induced quasi-equivalence

mfpC2,Γ,wq » FSp q

rwq.

4. Chain B-model

In this section, we study the dg-category of L-graded matrix factorisations of w “ xpy`yq, where
L this time is freely generated by ~x and ~y modulo the relation

p

`
~x “

q ´ 1

`
~y,

where ` ď d “ gcdpp, q ´ 1q is again the index of Γ in Γw. Analogously to the loop case, we consider
S “ Crx, ys as an L-graded ring with |x| “ ~x and |y| “ ~y, so that w is quasihomogeneous of degree ~c,
and write R “ S{pwq. Again, R is a graded Gorenstein ring of Krull dimension one and Gorenstein
parameter α “ ~x ` ~y ´ ~c.

Analogously to the loop case, we write w “ yw1 . . . w`, where

wr “ x
p
` ´ e

π
?

´1
` ηry

q´1
`

for η a fixed primitive `th root of unity. With this, there are ``1 matrix factorisations coming from
(Γ-equivariantly) factoring w. These correspond to

Ky
‚ “ p¨ ¨ ¨ Ñ Sp´~cq

w
ÝÑ Sp´~yq

y
ÝÑ S Ñ ¨ ¨ ¨ q,

as well as the matrix factorisations

Kwr
‚ “ p¨ ¨ ¨ Ñ Sp´~cq

w{wr
ÝÝÝÑ Sp´

p

`
~xq

wr
ÝÑ S Ñ ¨ ¨ ¨ q.

In addition, we also consider the objects
jKy “ Kyppj ` 1 ´ qq~yq

for j “ q ´
q´1
` , . . . , q ´ 1. Similarly to the loop case, for 1 ď i ď p ´ 1, q ´

q´1
` ď j ď q ´ 1 and

k “ t
pi´1q`

p u we write

Ii,j “ pxiq `

k
ÿ

t“1

pxi´t p
` yj´p`´tq q´1

` q ` pyj´p`´k´1q
q´1
` q

“ pxi, xi´
p
` yj´p`´1q

q´1
` , . . . , xi´k p

` yj´p`´kq
q´1
` , yj´p`´k´1q

q´1
` q
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and the L-graded R-modules
Rpi~x ` pj ` 1q~yq{Ii,j .

The corresponding rank pk`2q matrix factorisation, which we denote by i,jK0, is given by stabilising
this module beginning with

Rppj ` 1q~yq ‘

k´1
à

t“0

Rp~cq ‘ Rp~c ` i~x ´ pk ` 1q
q ´ 1

`
~yq

´

xi . . . yj´p`´k´1q
q´1
`

¯

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Rpi~x ` pj ` 1q~yq.

From this, it is straightforward to check that the maps defining the matrix factorisation are given
in even degree by

d0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

yj´p`´1q
q´1
` 0 . . . 0 xp´iy

´x
p
` y

q´1
` . . . 0 0

0 ´x
p
` . . . 0 0

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . y
q´1
` 0

0 0 . . . ´xi´k p
` yq´j`p`´k´1q

q´1
`

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (28)

and in odd degree by d1 “ Adjpd0q. Explicitly, we have that i,jK0 corresponds to the matrix
factorisation

Sp~c ´
q´1
` ~yq Sppj ` 1q~yq Sp2~c ´

q´1
` ~yq

Àk´1
t“0 Sp~c ´

q´1
` ~yq

Àk´1
t“0 Sp~cq

Àk´1
t“0 Sp2~c ´

q´1
` ~yq

Sppj ` 1q~y ` i~x ´ ~cq Sp~c ` i~x ´ pk ` 1q
q´1
` ~yq Sppj ` 1q~y ` i~xq

À

¨ ¨ ¨

À
À

¨ ¨ ¨

À

d0

À

d1

À

where, as before, the rightmost term is in cohomological degree 0, and the differentials go between
the whole columns, not just the middle modules.

As in the maximally graded and loop cases, we are interested in a full subcategory B of mfpC2,Γ,wq

consisting of the objects described above. Namely, let B be the category consisting of the ppq´1q

` ` `
objects

V “ ti,jK0,
jKy, Kw1r3s, . . . , Kw`

r3sui“1,...,p´1; j“q´
q´1
`

,...,q´1.

In the following sections we compute the morphisms between the objects in this category, culminating
in the description of B as a quiver algebra in Theorem 4.4.

4.1. Morphisms between the Kx’s, Ky’s and Kwr ’s. For calculations regarding the modules
Ky and Kwr , the arguments carry over from the maximally graded and loop cases with minimal
alteration.

Lemma 4.1. In HMFpC2,Γ,wq, we have the following:
(i) For any j P Z, the objects jKy, . . . ,

j`
q´1
`

´1Ky are exceptional and pairwise orthogonal.
(ii) The objects Kw1 , . . . ,Kw`

are exceptional and pairwise orthogonal.
(iii) For each j “ q ´

q´1
` , . . . , q ´ 1 and r “ 1, . . . , `, the objects jKy and Kwr are mutually

orthogonal. �
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4.2. Morphisms between the Kw’s and K0’s. The fact that Hom‚pKwr ,
i,jK0q “ 0 is routine.

In the other direction, we argue as in the loop case. Namely, we observe that

dimCHom‚pKwr ,
i,jK0p~c ´ ~x ´ ~yqq “

#

1 if ‚ “ ´3

0 otherwise,
(29)

and then find a non-trivial element of Hom3pi,jK0, Kwrq. This results in the following lemma, whose
proof is easily adapted from that of Lemma 2.4.

Lemma 4.2. For each r “ 1, . . . , `, there is a single morphism between i,jK0 and Kwr given by

Hom3pi,jK0, Kwrq “ C ¨

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

yq´1´j

e´πi
` η´r

pe´πi
` η´rq2

...

pe´πi
` η´rqk

pe´πi
` η´rqk`1xpk`1q

p
`

´i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

�

Computing morphisms i,jK0 Ñ I,JK0 is analogous to the maximally graded case, and follows
analogous arguments to that of Section 2.5. Namely, morphisms i,jK0 Ñ I,JK0 are spanned by the
module

`

R{II,J
˘

pI´iq~x`pJ´jq~y

in degree zero. From this, it is immediate that there are no morphisms unless I ě i. Analogously to
the loop case, it is now possible to have j ą J since p

`~x “
q´1
` ~y. Putting this together, we conclude:

Lemma 4.3. For all i P t1, . . . , p ´ 1u and j P tq ´
q´1
` , . . . , q ´ 1u, we have

Hom‚pi,jK0,
I,JK0q »

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

spanCtxI´iyJ´j , . . . , xpI´iq mod p
` yJ´j`k q´1

` u if I ě i, J ě j

and ‚ “ 0

spanCtxI´i´ p
` yJ´j`

q´1
` , . . . , xpI´iq mod p

` yJ´j`k q´1
` u if J ă j, I ě i `

p
`

and ‚ “ 0

0 otherwise. �

4.3. The total endomorphism algebra of the basic objects. As in the loop case, we are able
to describe the endomorphism algebra of the category B explicitly as a quiver-with-relations. The
proof follows from that of the maximally graded case with the analogous alterations required in
Theorem 2.8.

Theorem 4.4. The cohomology-level total endomorphism algebra of the objects of B is the algebra
of the quiver-with-relations described in Figure 8, with all arrows living in degree zero. In particular,
B is a Z-graded A8-category concentrated in degree 0, so is intrinsically formal.
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¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

...
.... .

.

a

a

a

jKyr3s

Kwr r3s

...

p
` ´ 1

q´1
`

c`
c1

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

...
...

.... .
.

p
`

Morphisms:
(i) Horizontal arrows are

labelled by x,
(ii) Vertical and diagonal arrows

are labelled by y.

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

... . .
. ...

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

...
...

.... .
.

i,jK0

Relations:
(i) xy “ yx,

(ii) ay “ 0,
(iii) crpx

p
` ´ e

πi
` ηry

q´1
` q “ 0.

Figure 8. The quiver describing the category B for chain polynomials. There are
` ´ 1 blocks of size ppq´1q

`2
and one of size p

p
` ´ 1q

q´1
` .

4.4. Generation. The last step in showing that the collection of objects in B generates mfpC2,Γ,wq.

Proposition 4.5. The functor
TwB Ñ mfpC2,Γ,wq

is a quasi-equivalence.

Proof. The strategy is the same as Corollary 2.14, so we will be brief, only explaining the points
which differ from the loop and maximally graded chain cases. As before, we must prove that
Rplq{px, yq P xV y for each l P L{~cZ » Z{

`

pq
`

˘

, and we begin by observing that Rpa~x`b~yq{px, yq P xV y

for a “ 1, . . . , p ´ 1, b “ 1, . . . , q ` 1 ´
q´1
` by the same argument as in the loop and maximally

graded cases. Furthermore, we see that, up to grading shifts by r´2s, this includes Rpl~yq{px, yq for
l “ 1, . . . , p`´1q

q´1
` , as well as Rppa´

p
` q~x`~yq{px, yq for a “ 1, . . . , p´1. From the Rpl~yq{px, yq, we

build Rpl~yq{pyq for l “ 1, . . . , p`´1q
q´1
` analogously to the maximally graded case. Namely, the cone

of Rppj ` 1q~y ´ ~cq{pyq
x
p
`

ÝÝÑ Rpj~yq{pyq is Rpj~yq{px
p
` , yq, and can be built by iterative cones from the

previously constructed stabilisations of the origin. Together with the grading shifts of jKy, show that
Rpl~yq{pyq P xV y for all l P Z except for l ” ´

q´1
` mod ~c. We build this remaining module analogously

to Rppp´
p´1
` q~x`~yq{pxyq in the loop case. Namely, we can iteratively build Rppk´1q

q´1
` ~yq{pw1 . . . wkq

for k “ 2, . . . , `, and observe that Rpp` ´ 1q
q´1
` ~yq{pw1 . . . w`qr1s “ Rp~c ´

q´1
` ~yq{pyq. Now that we

have constructed modules Rpl~yq{pyq for all l P Z, we can produce Rpl~yq{px, yq for any l “ 1, . . . , q´1
as in the maximally graded case. Then, all that is left to do is construct R{px, yq and Rpa~x` ~yq for
a “ p´

p
` ` 1, . . . , p´ 1. The latter modules are constructed similarly to the maximally graded case

by observing that the cone of the morphism
`´1
à

t“0

R{pwq

´

xi . . . xi´p`´1q
p
` yp`´1q

q´1
`

¯

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Rpi~xq{pwq
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is i,q´1K0, and so Rpi~xq{pwqr1s “ Rpi~x ` ~yq{pyq P xV y. From here, the proof proceeds as in the
maximally graded case.

�

We deduce the following corollary, whose proof follows from Proposition 4.5 and Theorem 4.4 in
the same way as in the proof of [HS20, Theorem 4.9]:

Corollary 4.6 (Corollary 1, undeformed chain polynomial case). The object

E :“

¨

˚

˚

˝

à

i“1,...,p´1

j“q´
q´1
`

,...,q´1

i,jK0

˛

‹

‹

‚

‘

¨

˝

à

j“q´
q´1
`

,...,q´1

jKyr3s

˛

‚ ‘

˜

à

r“1,...,`

Kwr r3s

¸

is a tilting object for mfpC2,Γ,wq.

5. Chain A-model

In this section, we characterise the Fukaya–Seidel category of qw “ x̌p ` x̌y̌q with symmetry group
qΓ not necessarily trivial. The content of Sections 3.1 to 3.3 applies to this section unaltered, and
the subsequent subsections essentially follow from applying the same alterations of the maximally
graded case as was needed to study the loop A-model.

5.1. A resonant Morsification. As in the maximally graded and loop cases, we introduce the
Morsification qwε “ x̌p ` x̌y̌q ´ εx̌y̌, and observe that it descends to qwε : X Ñ C as

qwεpu, v, wq “ u
p
` ` wv

q´1
` ´ εw.

Pulling this back to the chart rXi, we get

q

rwipλi, µiq “ λ
pi
`
i µ

pi´1qp
`

i ` λ
p`´iqpq´1q

`
`1

i µ
p``1´iqpq´1q

`
`1

i ´ ελiµi,

where we continue to suppress the ε from the notation when considering q

rwε : rX Ñ C on charts.

The first thing to notice is that, when p “ ` “ 2 and q “ 3, q

rwε is only singular on one of
the charts, where it is given by the loop polynomial with p “ q “ 2. This observation actually
constitutes part of the initial evidence of the conjecture of Futaki and Ueda, where they reasoned
that the equivariant A–model should be derived equivalent to the maximally graded A–model of
x̌2y̌ ` x̌y̌2 in this case. Whilst this turns out to be true, there is a subtlety in its proof.
In the maximally graded case of x̌2y̌` x̌y̌2, the smooth fibre is a thrice punctured torus. In the case
of x̌2`x̌y̌3 with ` “ 2, it is a twice punctured torus. The reason being that, even though q

rwε : rX Ñ C
only has critical points on the chart rX2, the smooth fibre contains the point p´δ, 0q P rX1 which is
not visible in rX2. Therefore, the difference in smooth fibres gives rise to the possibility that the
Fukaya–Seidel category doesn’t match that of the corresponding maximally graded loop polynomial.
As it turns out, in this case, there are no compositions to compute – the resulting quiver is just the
D4 quiver with no relations.
More generally, any chain polynomial x̌p ` x̌y̌np`1 with ` “ p will have all critical points visible in
the charts rX2, . . . , rX`. Moreover, on these charts, the superpotential agrees with the superpotential
of x̌py̌ ` x̌y̌npp´1q`1 with ` “ p ´ 1. Whilst both Milnor fibres have the same genus, the former
has two punctures and the latter has three. In these more general cases, there are discs which
contribute to products, with some of these discs in the chain case passing through the additional
point in comparison to the loop case. For example, capping off the boundary component between
the left and middle cylinders in Fig. 6 results in the Milnor fibre for x̌3 ` x̌y̌7 – see Fig. 9 for a sketch
of how the fibres above the origin compare. Similarly, comparing Fig. 1 and Fig. 8 in these cases,
we see that the quivers have the same shape, although the relations are different.
Fortunately, the strategy of proof for the chain cases where ` “ p go through with essentially only
superficial alteration.
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Figure 9. Sketch of fibre above the origin for x̌3 ` x̌y̌7.

For chain polynomials with p ą `, the critical points are grouped into the following three types:

(i) µ
q´1
`

` “ ε, λ` “ 0
(ii) µi “ λi “ 0 for i “ 1, . . . , `

(iii) µ
q´1
`

` “ ε
q , λp´1

` “
εpq´1q

pq µ
1´

p`´1qp
`

` .
For the case of p “ `, there are only ` ´ 1 critical points of type (ii), although there is a critical
point at λ1 “ 0, µ1 “ 1

ε , which we notate as being of type (ii)’. For the purposes of computation,
this distinction is unimportant. In particular, in the parallel transport computations, the amount of
winding in each neck region is not determined by where two irreducible components intersect, but
rather the total change in argument of the vanishing path. We will therefore treat the cases of p “ `
and p ‰ ` together, notating the vanishing cycle corresponding to the critical point of type (ii)’ as
Vλ1µ1 .
The critical values of type (i) and (ii) are both 0, and the critical value corresponding to a critical
point of type (iii) is

´εµ`λ`pp ´ 1qpq ´ 1q

pq
.

Similarly to the loop case, there is a clear symmetry of these critical points. Namely, let pλ`
`,crit, µ

`
`,critq

be the unique positive real critical point of type (iii) in the chart rX`, with corresponding critical
value ccrit. Letting ζ and η denote the roots of unity

ζ “ e2πi{pp´1q and η “ e2πi{pq´1q, (30)

as well as α “ e2πi{pp´1qpq´1q, we see that there is a µp´1 ˆµq´1 action on the critical points of type
(iii) given by

tpζmηnp1´`qαnλ`
`,crit, η

n`µ`
`,critq : 0 ď m ď p ´ 2, 0 ď n ď q ´ 2u.

The critical value corresponding to pζmηnp1´`qαnλ`
`,crit, η

n`µ`
`,critq is αmpq´1q`npccrit, so there are

gcdpp,q´1q

` critical points in each of these critical fibres. We therefore restrict to the subset

tpζmηnp1´`qαnλ`
`,crit, η

n`µ`
`,critq : 0 ď m ď p ´ 2, 0 ď n ď

q ´ 1

`
´ 1u

in order to describe all of the critical points of type (iii) via symmetry.

The technical input and strategy for the chain case is identical to that of the loop case, with
the only differences being superficial. We therefore keep this section brief, and only describe the
alterations necessary in the chain case as they differ from the loop and maximally graded chain cases.

The vanishing paths corresponding to critical points (i) and (ii) are still straight lines form ´δ to
the origin, and we denote the corresponding vanishing cycles by nVλ1 qw1

and Vλiµi
. The preliminary
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vanishing paths γm,n are given by the circular arc from ´δe´θ as θ increases from 0 to

θm,n “ 2π

ˆ

m

p ´ 1
`

pn

pp ´ 1qpq ´ 1q

˙

,

and then the straight line path from ´αmpq´1q`npδ to αmpq´1q`npccrit. Again, we write m,nV pr
0 for

the corresponding vanishing cycles.

5.2. The zero fibre and its smoothing. The fibre of q

rwε above the origin has ` ` 1 components.
Namely, it comprises: the line tλ` “ 0u in the chart rX`, the complex lines p0, µiq and pλi`1, 0q in
the charts rXi and rXi`1, respectively, which patch together to give ` ´ 1 projective lines in an A`´1

configuration, and the curve given by qwi “ q

rwiλ
´1
i µ´1

i in the charts rXi for i “ 2, . . . , `, and by
qw1 “ q

rw1λ
´1
1 in rX1.

Figure 10. A sketch of the fibre of q

rwε above the origin.

Remark 5.1. The topology of the smooth fibre was computed in [Hab21, Section 6.2]. Namely, it is
a curve of genus

gpΣq “
1

2`
ppq ´ p ` ` ´ gcdp`q, p ` q ´ 1qq

with 1 ` gcdpq, p`q´1
` q boundary punctures.

5.3. The vanishing cycles. Just as in the loop case, we fist construct the real vanishing cycle 0,0V pr
0

and then construct the rest by a combination of symmetry considerations and parallel transport. In
this case, the symplectomorphism f

piq
m,n is given by

f piq
m,n : rXi Ñ rXi

pλi, µiq ÞÑ pξmp``1´iqηnp1´iqαnp``1´iqλi, ξ
npi´`qηniαnpi´`qµiq.

Applying the parallel transport arguments of the loop case, we see that the µi coordinate of the
Lagrangian m,nV pr

0 interpolates between

´2π

ˆ

mpq ´ 1qp` ` 1 ´ iq ` npp1 ´ iq ` n`

pp ´ 1qpq ´ 1q

˙

and 2π

ˆ

mpi ´ `qpq ´ 1q ` nip ´ n`

pp ´ 1qpq ´ 1q

˙

in the neck region containing Vλiµi
as |µ`| increases, whilst the argument µ` ´ ηn`µ`

`,crit interpolates
the other way in its argument about the neck region containing nVλ1 qw1

.
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As in the loop case, we modify the vanishing paths so that they are disjoint away from the
distinguished point when the difference in the argument of the straight-line segments is less than
2π. We then push the remaining paths to go outside of the critical points, and see that this does
not affect the vanishing cycles. Correspondingly, we deduce the analogue of Proposition 3.8 in the
chain case. We then Hamiltonian isotope the vanishing cycles in the distinguished fibre in the same
way as in the loop case (although we only need to do this on the neck regions in rX` now), producing
a collection of ordered and transversely intersecting Lagrangians with which we can compute A

qΓ
.

5.4. Composition and gradings. As in the loop case, the Floer complexes can be taken to all be
graded in degree zero, and this is proven in the same way. With this grading, we have the proof of
the main theorem in the chain case.
Theorem 5.2 (Theorem 1, undeformed chain polynomial case). Under the correspondence

m,nV0 Ø i,jK0

nVλ1 qw Ø jKyr3s

Vλkµk
Ø Kwr r3s

with
i ` m “ p ´ 1

j ` n “ q ´ 1

k ` r “ `

(31)

the Z-graded A8-category A
qΓ

is identified with the quiver algebra of Theorem 4.4 and is formal, so
there is a quasi-equivalence

mfpC2,Γ,wq » FSp q

rwq

Proof. The only thing to check is that the morphisms in A
qΓ

compose in the claimed way, but this
follows by the same reasoning as in the loop case. �

6. Brieskorn–Pham polynomials

6.1. The B-model. We now deal with the last, and most simple, of invertible polynomials in two
variables. Namely, we let w “ xp `yq, and consider the L-graded rings S “ Crx, ys and R “ S{pwq,
where L is generated by |x| “ ~x and |y| “ ~y modulo the relations

p

`
~x “

q

`
~y,

where ` ď d “ gcdpp, qq is the index of Γ in Γw so that L » Z ‘ Z{
`

d
`

˘

and w is homogeneous of
degree ~c “ p~x “ q~y. Similarly to the loop case, we assume without loss of generality that p ě q ě 2.
Moreover, we have L{~cZ » Z{

`

pq
d

˘

ˆZ{
`

d
`

˘

. Similarly to the previous cases, we write w “ w1 . . . w`,
where

wr “ x
p
` ´ e

π
?

´1
` ηry

q
`

for η a primitive `th root of unity. With this, there are ` matrix factorisations coming from equiv-
ariantly factoring w

Kwr
‚ “ p¨ ¨ ¨ Ñ Sp´~cq

w{wr
ÝÝÝÑ Sp´

p

`
~xq

wr
ÝÑ S Ñ ¨ ¨ ¨ q

In the maximally graded case, this is the zero object in the category of matrix factorisations, but in
the non-maximally graded case these give non-trivial objects. We will therefore assume from now
on that ` ą 1, since the two cases are treated differently and the maximally graded case is already
established as a special case of [FU11].

The modules supported at the origin are the analogues of those in the loop and chain cases.
Namely, we write k “ t

pj´1q`
q u, and for i “ p` ´ 1q

p
` ` 1, . . . , p ´ 1 and j “ 1, . . . , q ´ 1, consider the

ideals

Ii,j “ pxi´p`´k´1q
p
` q `

k
ÿ

t“1

pxi´p`´k´1`tq p
` yj´pk`1´tq q

` q ` pyjq

“ pxi´p`´k´1q
p
` , xi´p`´kq

p
` yj´k q

` , . . . , xi´p`´1q
p
` yj´

q
` , yjq.



HOMOLOGICAL B-H-H MIRROR SYMMETRY FOR CURVE SINGULARITIES 39

In addition, we need to consider the ideals

Ip`´1q
p
`
,j “ pxk

p
` q `

k´1
ÿ

t“1

pxpk´tq p
` yj´pk`1´tq q

` q ` pyj´
q
` q

“ pxk
p
` , xpk´1q

p
` yj´k q

` , . . . , x
p
` yj´2 q

` , yj´
q
` q

for i “ p` ´ 1q
p
` and j “

q
` ` 1, . . . , q ´ 1. In both cases, we let i,jK0 be the matrix factorisation

corresponding to the L-graded R-module
Rpi~x ` j~yq{pIi,jq.

For the modules with i ą p` ´ 1q
p
` , this is given by the rank pk ` 2q matrix factorisation

Sp~c ´
p
`~xq Sp~c ´ pk ` 1q

p
`~x ` j~yq Sp2~c ´

p
`~xq

Àk´1
t“0 Sp~c ´

p
`~xq

Àk´1
t“0 Sp~cq

Àk´1
t“0 Sp2~c ´

p
`~xq

Spi~x ` j~y ´ ~cq Spi~xq Spi~x ` j~yq

À

¨ ¨ ¨

À À

¨ ¨ ¨

À

d0

À

d1

À

where

d0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

yj´k q
` 0 0 . . . 0 xp´i` p

`
p`´1´kq

´x
p
` y

q
` 0 . . . 0 0

0 ´x
p
` y

q
` . . . 0 0

0 0 ´x
p
` . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . y
q
` 0

0 0 0 . . . ´xi´p`´1q
p
` yq´j

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (32)

d1 “ Adjpd0q, and the differentials go between the whole rows, not just the middle modules. The
matrix factorisations for p`´1q

p
`
,jK0 are similar, although are of rank k ` 1. Analogously to the loop

and chain cases, we consider the category B whose objects are R{pwrqr3s for r “ 1, . . . , ` and i,jK0

above. Arguing as before, we arrive at:

Theorem 6.1. The cohomology-level total endomorphism algebra of the objects of B is the algebra of
the quiver-with-relations described in Figure 11, with all arrows living in degree zero. In particular,
B is a Z-graded A8-category concentrated in degree 0, so is intrinsically formal.

As before, we claim that the collection of objects in B generates mfpC2,Γ,wq; the proof follows
the same strategy of Propositions 2.14 and 4.5.

Proposition 6.2. The functor
TwB Ñ mfpC2,Γ,wq

is a quasi-equivalence. �

From this, we deduce the Corollary 1 in the undeformed Brieskorn–Pham case in the same way
as in the loop and chain cases. We state the corollary in the case of ` ą 1; the case of ` “ 1 is well
known, and goes back to at least [FU11, Theorem 1.2], [FU09, Theorem 6].

Corollary 6.3 (Corollary 1, Undeformed Brieskorn–Pham polynomial case). For ` ą 1, the object

E :“

¨

˚

˚

˝

à

i“p`´1q
p
`
,...,p´1

j“2,...,q´1

i,jK0

˛

‹

‹

‚

‘

¨

˝

à

i“p`´1q
p
`

`
q
`
,...,p´1

i,jK0

˛

‚ ‘

˜

à

r“1,...,`

Kwr r3s

¸
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¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

...
.... .

.

Kwr r3s

q
` ´ 1

c`
c1

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

... . .
. ...

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

...
...

.... .
.

q
`

¨ ¨ ¨

¨ ¨ ¨

...
...

.... .
.p

` ´ 1

i,jK0

Morphisms:
(i) Horizontal arrows are

labelled by y,
(ii) Vertical and diagonal arrows

are labelled by x.

Relations:
(i) xy “ yx,

(ii) crpx
p
` ´ e

πi
` ηry

q
` q “ 0.

Figure 11. The quiver describing the category B for Brieskorn–Pham polynomials.
There are `´2 blocks of size p

` ˆ
q
` , one of size p

p
` ´1q ˆ

q
` , and one of size p

` ˆ p
q
` ´1q

is a tilting object for mfpC2,Γ,wq.

6.2. The A-model. The computation of the A-model for Brieskorn–Pham polynomials is, by this
point, routine. The argument follows the previous two cases, and so we only summarise the results
here. For a Brieskorn–Pham polynomial qw “ x̌p ` y̌q, we have d “ gcdpp, qq, and we again Morsify
as qwε “ x̌p ` y̌q ´ εx̌y̌. This descends to C2{µ` as qw “ u

p
` ` v

q
` ´ εw, and pulls back to the chart

rXi as

q

rwipλi, µiq “ λ
pi
`
i µ

pi´1qp
`

i ` λ
p`´iqq

`
i µ

p``1´iqq
`

i ´ ελiµi.

The critical values fall into the groups

(i) µi “ λi “ 0 for

$

’

&

’

%

i “ 1, . . . , ` if q ą `,

i “ 1, . . . , ` ´ 1 if p ą q “ `,

i “ 2, . . . , ` ´ 1 if p “ q “ `,

(i)’ µ` “ 0, λ` “ 1
ε if p ą q “ `

(i)” µ` “ 0, λ` “ 1
ε and λ1 “ 0, µ1 “ 1

ε if p “ q “ `

(ii) µq´1
1 “ ε

qλ
1´

p`´1qq
`

1 , λ
p
`

´1

1 “
εµ1

p .

Remark 6.4. Analogously to the chain case, the Brieskorn–Pham cases with ` “ q have critical points
at the origin in fewer than ` charts. Indeed, one can check that the equivariant superpotential of
x̌n` ` y̌` matches that of x̌np`´1q ` x̌y̌` on charts where both superpotentials have critical points at
the origin; however, as in the chain case, the resulting Fukaya–Seidel categories are not equivalent
unless ` “ 2 or ` “ 3, n “ 1 due to the difference in topology of the smooth fibre. In the case of
` “ q “ 3 and n “ 1, this then further reduces to the maximally graded polynomial x̌2y̌ ` x̌y̌2.

Analogously to chain polynomials with ` “ p, the analysis of the cases where critical points of type
(i)’ or (i)” exist is only superficially different to the cases where q ą `. We therefore label the
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vanishing cycles corresponding to the critical point of type (i)’ as Vλ`µ`
, or the critical points of type

(ii)’ as Vλ`µ`
and Vλ1µ1 , respectively.

The critical value corresponding to critical points in the first three groups is zero, whist the
pp´1qpq´1q´1

` critical points in the second group have critical value
´εµ1λ1ppp ´ 1qpq ´ 1q ´ 1q

pq
.

As before, we denote pλ`
1,crit, µ

`
1,critq the unique positive real critical point whose critical value is

ccrit. The other critical points are then attained by symmetry considerations. Namely, for
pm,nq P pt0, . . . , p ´ 2u ˆ t0, . . . , q ´ 2uqztpp ´ 2, q ´ 2qu, (33)

we have that the other critical points of type (iv) are given in the chart rX1 by

pαn`mpq´1qλ`
1,crit, α

np
p
`

´1q`m´
mp`´1qq

` µ`
1,critq, (34)

where α “ e
2πi`

pq´p´q . Of course, as in the other cases, there is redundancy in considering the full
set in (33), and so we restrict to m “ 0, . . . , p` ´ 2 and n “ 0, . . . , q ´ 2, as well as m “

p
` ´ 1,

n “ 0, . . . , q ´ 2 ´
q
` .

Figure 12. A sketch of the fibre of q

rwε above the origin.

As computed in [Hab21, 6.3], the smooth fibre is a gcdpp, p`q
` q-punctured curve of genus

gpΣq “
1

2`
p2` ´ 1 ` pp ´ 1qpq ´ 1q ´ gcdp`q, p ` qqq.

We remove discs around the neck regions of Σ corresponding to the critical points whose critical
value is 0, and call the resulting surface Σ1, as before. We then trivialise the fibration over a disc,
identifying each fibre with Σ1. We then define the preliminary vanishing paths and cycles Vλiµi

and
m,nV pr

0 as in the loop and chain cases, taking

θm,n “
2π

`

np ` mq

pq ´ p ´ q
.

As usual, the vanishing cycles 0,0V pr
0 corresponds to pλ`

1,crit, µ
`
1,critq, and m,nV pr

0 are obtained from
this in Σ1 by (34). The full description in Σ is given by local parallel transport considerations on
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the necks which were removed from Σ to give Σ1. To yield bona fide vanishing paths, we perturb
the fibration slightly and introduce long fingers which go around the critical points when θm,n ą 2π
in the familiar way. As in the maximally graded case, this in fact now yields a set of transversely
intersecting vanishing cycles; there is no need to isotope.

Analogously to the previous sections, we have arg λ1 “ arg λ2 “ ¨ ¨ ¨ “ arg λ`, and this argument
interpolates between

´2π`

ˆ

npp ´ 1q ` m

pq ´ p ´ q

˙

and 2π`

ˆ

mpq ´ 1q ` n

pq ´ p ´ q

˙

.

as the modulus of λi increases, increasing an equal amount in each neck region. With this, it is
then checked in the same way as in the previous two cases that the corresponding category A

qΓ
is presented as the quiver algebra of the quiver with relations given in Fig. 11, where we use the
identification

m,nV0 Ø i,jK0

Vλkµk
Ø Kwr r3s

with
i ` m “ p ´ 1

j ` n “ q ´ 1

k ` r “ `.

(35)

Namely, the only compositions are the ones claimed, and the grading of the manifold can again be
taken such that all Floer complexes are graded in degree zero.

With all this, we arrive at the main theorem in the Brieskorn–Pham case. We state it for the
non-maximally graded case, as the maximally graded case is established as a special case of [FU11].

Theorem 6.5 (Theorem 1, non-maximally graded undeformed Brieskorn–Pham polynomial case).
For a Brieskorn–Pham polynomial w with grading group of index ` ą 1, the Z-graded A8-category
A

qΓ
is described under the identification (35) by the quiver with relations in Fig. 11, and is formal.

In particular, by Theorem 6.1, it is quasi-equivalent to B, and hence there is an induced quasi-
equivalence

mfpC2,Γ,wq » FSp q

rwq.

7. Mirror symmetry and deformations.

In this section, we observe that considering Berglund–Hübsch–Henningson mirror symmetry for
` ą 1 gives rise to a genuinely new phenomenon which is not present in the maximally graded case.
Namely, there are clear deformations of the categories appearing on both sides of the argument. In
this section, we compute and match these deformations, completing the proof of Theorem 1.

We begin with an observation about Hochschild cohomology for categories of matrix factorisations.

Lemma 7.1. Let w be an invertible polynomial in two variables with Γ Ď Γw an admissible group
of symmetries of index `. Then,

HH2pC2,Γ,wq “

$

’

&

’

%

spanCtg1, . . . , g`´3u if w “ xp ` yp for ` “ p

spanCtg1, . . . , g`´2u if w “ xpy ` ynp`1 or w “ xnp ` yp for n ą 1 and ` “ p

spanCtg1, . . . , g`´1u otherwise
where the gi are all monomials in Jac w which are of the same degree as w. Moreover,

HH3pC2,Γ,wq “ 0,

and so every infinitesimal deformation of mfpC2,Γ,wq extends to infinite order. In particular, every
deformation is realised by the category of Γ-equivariant matrix factorisations of

w~ε “ w `

N
ÿ

i“1

εigi, (36)

for ~ε “ pε1, . . . , εN q P CN for N “ dimCHH2pC2,Γ,wq.
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Proof. The computations of the Hochschild cohomology vector spaces is a straightforward applica-
tion of [BFK14, Theorem 1.2] (see, for example, [LU22, Section 3] or [Hab22, Section 4] for closely
related calculations). The Jacobians were computed in [Hab22, Section 2]. In particular, the second
Hochschild cohomology is, in this case, a count of the number of Γ-invariant elements of Jac w in
our case, and HH3 can similarly be seen to vanish since w has an isolated singularity. �

In the following, we shall only consider polynomials w~ε which continue to have an isolated hyper-
surface singularity at the origin. More precisely, this excludes polynomials w~ε which do not have
distinct branches at the origin. It will become momentarily clear that the space of polynomials such
that w~ε only has an isolated hypersurface singularity at the origin is the complement of p` ´ 1q!
generic hyperplanes in CN .

In this section, we study the loop case for concreteness; however, all arguments go through for
the chain and Brieskorn–Pham cases with only cosmetic alteration. To fix notation, we let E be the
tilting object of Corollary 2.15 and A “ End˚pEqp“ End0pEqq the quiver algebra of Fig. 1.
To connect this with the classical deformation theory of an algebra, we observe that the tilting
object for the category of matrix factorisations of w~ε is an infinite order deformation of A in the
usual sense. The first thing to observe is that w~ε can still be Γ´equivariantly factored as

xy
ź̀

r“1

px
p´1
` ´ e

πi
` ηrαry

q´1
` q, (37)

where η` “ 1 is the fixed root of unity as in the computations of Section 2, and
ś`

r“1 αr “ 1. This
last condition ensures that the expanding (37) yields a deformation of w of the form (36). It is
here that it becomes clear that the space of deformations which have an isolated singularity is the
complement of p` ´ 1q! generic hyperplanes in C`´1. In particular, we pairwise exclude the values
αr1 and αr2 such that ηr1αr1 “ ηr2αr2 .
With this, we then run through the argument of Section 2 for R~ε “ S{pw~εq. Whilst, for example,
the maps (13) are no longer in as clean a form as in the undeformed case, the actual computations,
with the exception of those in (2.4), do not change.
The key difference between the computation of matrix factorisations for w~ε compared with those
of w is contained in Lemma 2.4 and its consequences for the relations of the corresponding quiver
algebra. In the proof of this lemma (in the undeformed case), we showed that the kernel was one
dimensional and identified a basis vector for this space. The only non-trivial part was to show that
the image of the last row of dT0 included wr as a factor16, and so vanished in R{pwrq. Now, for R~ε,
the kernel is still one dimensional, but the basis element changes. In particular, the last row of the
corresponding differential must contain px

p´1
` ´e

πi
` ηrαry

q´1
` q as a factor. Consequently, the relation

corresponding to piiiq in Theorem 2.8 then becomes

crpx
p´1
` ´ e

πi
` ηrαry

q´1
` q “ 0.

Whilst the above shows how to recover a deformation of A in the classical sense from Lemma 7.1,
and, strictly speaking, this is all that we require, we still find it valuable to explain the reverse
implication, building a deformation in Lemma 7.1 from Hochschild cocycles17. In particular, we
consider Atr “ A bC Crtrs{pt2rq, and infinitesimally deform the product as

u ¨tr v “ u ¨ v ` trfpu b vq,

where f P HompA b A,Aq “ CC2pAq is a Hochschild cocycle representative of a Hochschild coho-
mology class rf s P HH2pAq and ´ ¨ ´ is the undeformed multiplication on A. In order to deform the
relation

cr ¨ px
p´1
` ´ e

πi
` ηry

q´1
` q “ 0,

16Recall that our notation is that w “ xyw1 . . . w`.
17We thank the anonymous referee for this suggestion.
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we take fpcrbpx
p´1
` ´e

πi
` ηry

q´1
` qq “ ´e

πi
` ηrcry

q´1
` (and zero on the other generators of the algebra).

One can see that this is a cochain by the definition of multiplication on A. In particular, there are
three possible non-vanishing configurations for δfpu b v b wq. These are when two of u, v or w are
cr and px

p´1
` ´ e

πi
` ηry

q´1
` q (appearing in that order) and the other is the appropriate idempotent.

It is then straightforward to check directly that δf “ 0 in these cases as well. The infinitesimally
deformed relation becomes

crpx
p´1
` ´ e

πi
` ηrp1 ` trqy

q´1
` q “ 0.

Since HH3pAq “ 0, we can extend this deformation to higher order defining a product on A bC
Crtrs{ptn`1

r q

u ¨ε v “ u ¨ v ` trf
p1qpu b vq ` ¨ ¨ ¨ ` tnr f

pnqpu b vq,

where the f pkq P HompA b A,Aq are similarly (representatives of) cocycles. Here, we set f pkqpcr b

px
p´1
` ´ e

πi
` ηry

q´1
` qq “ ´ 1

k!e
πi
` ηrcry

q´1
` , and so, by extending our deformation to infinite order, our

deformed relation becomes

crpx
p´1
` ´ e

πi
` ηr

`

ÿ

kě0

tkr
k!

˘

y
q´1
` q “ 0.

The sum
ř8

k“0
tkr
k! converges to etr for all values of tr. Fixing tr, this defines a deformed product on

A. We can then repeat the above argument to deform the other relations corresponding to piiiq in
Theorem 2.8. There are therefore ` deformation parameters; however, we note that two deformations
are equivalent iff, for a fixed constant k P C, tr “ t1

r ` k for all r “ 1, . . . `. The equivalence is given
by simply scaling the elements labelled by y by a fixed amount which cancels the ek term in each
relation corresponding to piiiq in Theorem 2.8. Note that the other relations are unaffected by this
scaling. In particular, the deformation is trivial iff t1 ” ¨ ¨ ¨ ” t` mod 2πi. We therefore explicitly see
the ` ´ 1 deformation parameters of Lemma 7.1. Finally, since scaling each etr by a fixed constant
is a trivial deformation, we can choose a distinguished representative of each deformation class by
setting αr “ etrβ for any fixed constant β such that β´` “

ś`
k“1 e

tk so that
ś`

k“1 αk “ 1. Expand-
ing out xy

ś`
r“1px

p´1
` ´ e

πi
` ηrαry

q´1
` q and matching coefficients of the gi gives the deformation w~ε

in Lemma 7.1.

With deformations on the B–side understood, we must demonstrate that we can realise these
same deformations symplectically. In what follows, we will recall some facts about B–fields and
deformations more generally, before specialising to the case at hand.
Let θ1, . . . , θN be a collection of vanishing thimbles for a Lefschetz fibration M Ñ C, in particular
such as in Section 3, Section 5 or Section 6.2. We then let Θ “

Ť

θi be the union, and recall that
computing the coefficients of the Floer products is equivalent to defining a homomorphism

H2pM,Θ;Zq Ñ C˚, (38)

sending each contributing disc u : D2 Ñ M to an element of C˚, the coefficient of the output of
this disc. In principle, any such homomorphism would be permissible, but it is most geometrically
meaningful to define it by considering the symplectic areas of the discs and sign contributions com-
ing from the orientations of moduli spaces of such discs. Letting φ : H2pM,Θ;Zq Ñ C˚ be this
homomorphism, we will be looking for a homomorphism φ1 such that φ` φ1 describes the deformed
product.

Now, observe that, since C˚ is an injective Z-module, Ext1ZpH1pM,Θ;Zq,C˚q “ 0, and
H2pM,Θ;C˚q » HomZpH2pM,Θ;Zq,C˚q (39)
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by the universal coefficient theorem. For an element which yields the undeformed Floer product, its
image under the map

H2pM,Θ;C˚q Ñ H2pM ;C˚q

coming from the long exact sequence for relative cohomology of the pair pM,Θq is the identity.
Again by the universal coefficient theorem, H2pM ;C˚q » HompH2pM ;Cq,C˚q, where

H2pM ;Cq Ñ C˚

A ÞÑ e
ş

A B

for a fixed B P H2pM ;Cq. In order to deform the Floer products, the idea is to pick such an
element B P H2pM ;Cq, consider its image in H2pM ;C˚q and then weight the Floer products by
the homomorphism (38) corresponding to (an element in) the preimage of this element. For this to
make sense, we require18 that B|Θ P H2pΘ; 2πiZq, so that B is in the kernel of the map

H2pM ;C˚q Ñ H2pΘ;C˚q, (40)

and it can be lifted to H2pM,Θ;C˚q. Moreover, this guarantees the existence of a line bundle Li Ñ θi
with connection ∇i on each Lagrangian such that c1pLq “ B|θi “ F∇i . Considering u : D2 Ñ M as
an element of H2pM,Θ;Zq, the lift of the map pA ÞÑ e

ş

A Bq P H2pM ;C˚q to H2pM,Θ;C˚q is given
by

u ÞÑ HolpBuqe
ş

D2 u˚B,

where HolpBuq is the holonomy around the boundary of the disc given by the parallel transport in-
duced by ∇i along each component, as well as fixed isomorphisms Li|p » Lj |p for p P θi X θj . It is in
this way that, given an element B P H2pM ;Cq whose restriction to each Lagrangian is integral, one
can deform the Floer products. Such a cohomology class is referred to as a B–field, and was originally
introduced in Floer theory by Fukaya in [Fuk02] as a way of enlarging the class of objects in the
Fukaya category. His construction dealt with unitary19 B–fields iB P H2pM ; iRq, and was expanded
upon by [Cho08] who considered non-unitary B–fields B P H2pM ;Cq. It should be emphasised that
we keep the symplectic form fixed, only changing how pseudoholomorphic curves are weighted, not
which curves contribute. Deformations of Fukaya–Seidel categories by B–fields in the context of
homological mirror symmetry have played an important role, for example in [AKO08, AKO06].

We now return specifically to the case at hand, so M “ rX, the crepant resolution of the A`´1

singularity. We also exclude the transpose of the sporadic families in Lemma 7.1 from the discus-
sion. Working with a B–field and explicitly calculating the weights of the discs is the most geometric
approach, although can be computational taxing. Instead, we opt to choose directly the homomor-
phism (38) such that the relations amongst Floer products matches the deformations on the B–side
and then define the B–field to be an element20 which yields this deformation.
In order to define this homomorphism, we continue to send all triangles with boundary on exact
Lagrangians to the identity (this ensures that the commutativity relation (i) of Fig. 1 continues to
hold). Then, consider triangles whose boundary is on

p´1
`

,0V0 Y 0,0V0 Y Vλrµr (of which there are
two21 – one big and one small). For each Vλrµr , we send the big and small triangles to edr or ecr ,

18Different authors have different conventions, stemming from whether one considers the first Chern class of a line
bundle to have a factor of 2πi or not.

19Meaning that the cohomology class takes values in the Lie algebra of the unitary group.
20This is a non-unique choice, stemming from the fact that the lifts of an element of H2

p rX;C˚
q is a torsor over

H1
pΘ;C˚

q, as well as the non-uniqueness of the complex logarithm in determining B P H2
p rX;Cq from an element of

H2
p rX;C˚

q. By construction, however, the resulting deformations are the same.
21We are defining this for the configuration of vanishing cycles which was used to compute A

qΓ
. If one were

to Hamiltonian isotope these Lagrangians so as to introduce new intersections, it would be necessary to alter this
description.
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respectively, for some cr, dr P C, such that
edr´cr “ αr,

where αr was the deformation parameter on the B–side. This can be done consistently since the
Vλrµr are pairwise disjoint and each triangle has at most one of these Lagrangians on its boundary.
The remaining triangles which contribute to Floer products are then determined by virtue of the
map being a homomorphism and the commutativity of the product between exact Lagrangians.
From this, we define our B–field as explained above. By construction, the resulting Fukaya–Seidel
category is presented as modules over the algebra in Fig. 1 with the third relations deformed by a
factor of αr, as in the B–model.

Remark 7.2. The above argument might seem objectionable for its lack of geometric origin, but it
is actually just cutting to the chase of what we want out of a B–field. It is also not so complicated
to see which B–field a particular deformation corresponds to. For example, in Fig. 6, ed1 is the
contribution from the B–field of the green (large) triangle and ec1 is the contribution from the light
blue (small) triangle. There are similarly triangles with boundary on 0,0V0, 0,1V0 and Vλ2µ2 with
B–field contributions ed2 and ec2 . Let Z P H2p rX,Θ;Zq be the relative homology class given by the
cylinder between Vλ1µ1 and Vλ2µ2 . Then, we since Z “ d1 ´ d2 ´ c1 ` c2, we have

Z ÞÑ ed1´d2´c1`c2 . (41)

Since the two Lagrangian thimbles are symmetric about the zero section in rX » OP1p´2q, the
connection forms on ∇1 and ∇2 at worst differ by an exact one form. In particular, B|θ1 is the
same exact two form on θ1 as the two form B|θ2 is on θ2. Consequently, the holonomies around the
boundaries of these Lagrangians,

ş

θi
B|θi , are equal. Since BZ “ Bθ1´Bθ2, the holonomy contribution

of of (41) is zero, meaning that

pZ ÞÑ ed1´d2´c1`c2q ÞÑ ed1´d2´c1`c2 P H2p rX;C˚q

in the long exact sequence of the pair. Call C the generator of the second cohomology of rX. Then,
the B–field which corresponds to this deformation is22

B “ ´
1

2
pd1 ´ d2 ´ c1 ` c2qC. (42)

More generally, one can do this for each generator of H2p rX;Cq, although it should be reiterated
that this is not necessary for our argument. We point this out only to make connection with the
geometric origins of B–fields.

This process yields ` parameters which we freely deform; however, as on the B–side, there is a
relation amongst them. Namely, scaling each of the contributions dr ´ cr ÞÑ λ ` dr ´ cr for some
λ P C yields the same deformation. This can be seen algebraically in the same way as on the B–
model, or one can observe that scaling the deformation parameters like this yields the same B–field.
Symplectically, it is immediate in (42) for rX above, and the general case is achieved by iterating
this construction.

Remark 7.3. It is worth remarking that we could have started with the undeformed case φ :

H2p rX,Θ;Zq Ñ C˚ corresponding to counting discs with respect to the exact symplectic form and
then finding a B–field such that φ`φ1 matches deformations of the B–model. We didn’t do this for
the following reason. In the B–model, the algebra and geometry is given to us by direct calculation,
and is naturally the ‘undeformed’ case. We believe that it is a less clear argument to then construct
the mirror A–model as a deformation of something, where the B–model isn’t. Particularly since
we are looking to prove that mirror symmetry holds under deformations, it makes sense that the
‘base case’ for this deformation statement corresponds to where both the A– and B–models are
undeformed.

Putting this all together yields a proof of the the remaining statement of Theorem 1.
22Recall that C2

“ ´2
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Theorem 7.4 (Theorem 1, deformed cases). Let w be an invertible curve singularity with admissible
grading group Γ Ď Γw, qw be the Berglund–Hübsch transpose with dual grading group qΓ. Furthermore,
let ~ε P CN and w~ε “ w `

řN
i“1 εigi as in Lemma 7.1 such that w~ε has an isolated hypersurface

singularity at the origin. Then, there exists a non-unitary B-field such that there is a quasi-
equivalence of Z-graded pre-triangulated A8-categories over C

mfpC2,Γ,w~εq » FSp q

rw;Bq.

Remark 7.5. In the A–model corresponding to the cases where the rank of the second Hochschild
cohomology is less than `´1, there are more exceptional spheres than deformation parameters. This
does not affect the argument, however, since we can still add a B-field to realise any deformation on
the B-side which we are considering.
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