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Abstract

The central theme of this thesis is homological mirror symmetry for curve singulari-

ties defined by invertible polynomials. The main results are contained in Chapters

3, 4, and 5. Chapter 3 is based on joint work with Jack Smith, and establishes

homological Berglund–Hübsch mirror symmetry for invertible polynomials in two

variables by matching generating collections on both sides. Along the way, we show

that the category of graded matrix factorisations has a tilting object, confirming a

conjecture of Lekili and Ueda ([LU18, Conjecture 1.3]) in the case of curves.

In Chapter 4, we build on the results of Chapter 3 to establish a derived equivalence

between the Fukaya category of the Milnor fibre and the derived category of perfect

complexes on the proposed mirror. The strategy of proof builds on that of Lekili and

Ueda in [LU18], and uses a moduli of A∞-structures argument. A key step in the

proof of this result is to reconstruct the Milnor fibres by a gluing procedure.

In Chapter 5, we prove homological mirror symmetry for a framework which gen-

eralises that of invertible curve singularities. Namely, the B–model is taken to be a

chain or ring of weighted projective lines joined nodally such that each irreducible

component is allowed to have non-trivial generic stabiliser, and the A–model is built

using the gluing construction of Chapter 4. As a special case, this completely re-

solves a conjecture of Lekili and Ueda on invertible polynomials ([LU18, Conjecture

1.4]) in complex dimension one. This also re-establishes the results of Chapter 4

by different methods and generalises the results of [LP17b]. As a corollary, we

prove some derives equivalences between categories of sheaves on the B–models by

studying when the corresponding A–models are graded symplectomorphic.
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Impact Statement

The work in this thesis sits at the intersection of three prominent areas of modern

mathematics: symplectic topology, algebraic geometry, and representation theory.

The main results uniformly establish several homological mirror symmetry conjec-

tures in the first non-trivial dimension – that of curves. Thus, I believe that the results

of this thesis will find application due to the interest of the mathematical community

in these conjectures. I also believe the techniques in this thesis are able to be further

developed to provide new tools in their respective fields, independent of applications

to homological mirror symmetry.

In order to achieve this impact, the paper on which Chapter 3 is based has already

appeared in a peer-reviewed journal, whilst the paper on which Chapter 4 is based

has been accepted for publication. In addition, the paper on which Chapter 5 is based

is publicly available on the arXiv, and has been submitted for peer-review. Interest in

this work is evidenced by citations of subsequent work by various authors, as well as

my recent invitations to present the findings of my thesis in, for example, seminars

at the Korean Institute of Advanced Study, the University of Hamburg, and the FD

Seminar (Bonn).
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Chapter 1

Introduction

There has always been an interplay between mathematics and theoretical physics,

although this relationship has grown stronger in recent decades. In particular,

mathematical ideas which have arisen from string theory have proven to be truly rev-

olutionary, providing a deep insight into relationships between areas of mathematics

which were previously thought to be unconnected. One of the most consequential

ideas which has arisen is homological mirror symmetry. Roughly speaking, this

posits an equivalence between certain categories arising in the study of the symplec-

tic topology of one space, possibly equipped with some extra data, and the algebraic

geometry of another. These are known as the A– and B–models, respectively.

Before mirror symmetry, symplectic topology and algebraic geometry were not

seen as being intimately linked. Topology is a global study, and any two symplectic

manifolds of the same dimension are locally equivalent. On the other hand, this

is far from true in algebraic geometry, where the objects of study are more rigid.

It therefore stands to reason that these geometries should not be closely related (if

at all); however, this conventional wisdom was overturned in [CdlOGP91], where

symplectic enumerative invariants were correctly predicted using the principle of

mirror symmetry.

Several years after this initial breakthrough, the original enumerative predic-

tions were refined by Maxim Kontsevich in his 1994 ICM address ([Kon95]) to
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conjecture that a categorical version of mirror symmetry should hold. The resulting

homological mirror symmetry (HMS) conjecture proposed that certain categories

arising in the study of symplectic topology and algebraic geometry of a mirror pair

of Calabi–Yau varieties should be equivalent, and that this should be the underlying

phenomenon explaining the previously observed dualities. Subsequently, there

have been numerous generalisations to predict equivalences between the categories

arising from the A– and B– models in the setting of, for example, Fano or general

type varieties, stacks, or Landau–Ginzburg models on these spaces (cf. [HV00],

[KKOY09], [KL03], [Sei01]).

There is now a significant body of evidence towards the HMS conjecture in all of its

interpretations, where important cases have been proven in, for example, [PZ98],

[Sei03], [She15], [AKO08], [AAE+13], [LP17a]. Nevertheless, there is still not

even a conjectural mirror partner for many A– or B–models, and examples of the

correspondence have remained difficult to prove, even in cases where the conjectured

mirror pair is explicitly understood.

Recently, homological mirror symmetry for invertible polynomials has gained

a lot of attention. In this context, HMS is a series of conjectures which postulate

a relationship between the symplectic topology and algebraic geometry of two

polynomials which are related by a very elementary operation – matrix transposition.

The precise and simple formulation of HMS for invertible polynomials allows one to

overcome the first major obstacle of mirror symmetry – predicting what the mirror

model should be – although the conjectures are still sufficiently broad in scope to

provide new and interesting examples. The main results of this thesis provide a

uniform treatment of the first non-trivial case of these conjectures – that of curves.
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1.1 Homological mirror symmetry for invertible

polynomials
Consider an n×n matrix A with non-negative integer entries ai j. From this, we can

define a polynomial w ∈ C[x1, . . . ,xn] given by

w(x1, . . . ,xn) =
n

∑
i=1

n

∏
j=1

xai j
j .

In what follows, w will always be quasi-homogeneous, and so we can associate to it

a weight system (d0,d1, . . . ,dn;hw), where

w(td1x1, . . . , tdnxn) = thww(x1, . . . ,xn),

and d0 := hw−d1−·· ·−dn. There is a trichotomy of cases depending on d0:

• Log Fano: d0 < 0,

• Log Calabi–Yau: d0 = 0,

• Log general type: d0 > 0.

In the case of two variables, which is the primary focus of this thesis, all invertible

polynomials are of log general type with the exception of w = x2 + y2. In [BH93],

the authors define the transpose of w, denoted by w̌, to be the polynomial associated

to AT ,

w̌(x̌1, . . . , x̌n) =
n

∑
i=1

n

∏
j=1

x̌a ji
j ,

and we call this the Berglund–Hübsch transpose. One can associate a weight system

for w̌, denoted by (ď0, ď1, . . . , ďn; ȟw̌), in the same way. We call a polynomial w

invertible if the matrix A is invertible, and if both w and w̌ define isolated singulari-

ties at the origin. Such polynomials are automatically quasi-homogeneous and the

systems of weights associated to w and w̌ are unique (see Chapter 2).
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Recall that for f ∈ C[x1, . . . ,xn] and g ∈ C[y1, . . . ,ym], their Thom–Sebastiani

sum is defined as

f �g = f ⊗1+1⊗g ∈ C[x1, . . . ,xn,y1, . . . ,ym]. (1.1)

A corollary of Kreuzer–Skarke’s classification of quasi-homogeneous polynomials,

[KS92], is that any invertible polynomial can be decoupled into the Thom–Sebastiani

sum of atomic polynomials of the following three types:

• Fermat: w = xp1
1 ,

• Loop: w = xp1
1 x2 + xp2

2 x3 + · · ·+ xpn
n x1,

• Chain: w = xp1
1 x2 + xp2

2 x3 + · · ·+ xpn−1
n−1 xn + xpn

n .

The Thom–Sebastiani sums of polynomials of Fermat type are also called Brieskorn–

Pham.

Remark 1.1.1. In this thesis, when we refer to an ‘invertible polynomial’, we will

always mean a polynomial of loop, chain, or Brieskorn–Pham type unless otherwise

stated, and also assume that each pi ≥ 2.

To any invertible polynomial, one can associate its maximal symmetry group

Γw := {(t1, . . . , tn+1) ∈ (C∗)n+1| w(t1x1, . . . , tnxn) = tn+1w(x1, . . . ,xn)}. (1.2)

In general, Γw contains C∗ as a subgroup of finite index, and we consider certain

admissible subgroups C∗ ⊆ Γ ⊆ Γw (see Definition 2.2.4). Correspondingly, one

must consider a group Γ̌ which acts on the mirror, defined in (2.12).

Remark 1.1.2. In this thesis, we will be careful to write Γ when what we say is

valid for any admissible subgroup, and Γw when we specifically mean the maximal

symmetry group.
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Conjecture 1. Let w be an invertible polynomial and Γ⊆Γw an admissible subgroup

of the maximal group of symmetries of w. Then, there is a quasi-equivalence

mf(An,Γ,w)' DπFS(w̌, Γ̌)

of pre-triangulated A∞ categories over C.

Here, the B–model is the category mf(An,Γ,w) of Γ-equivariant matrix factori-

sations of w :An→A. In the maximally graded case, this is equivalent to considering

graded matrix factorisations with respect to the maximal grading group for which w

is homogeneous, namely the abelian group L freely generated by elements~x1, . . . ,~xn

(the degrees of x1, . . . ,xn respectively) and~c (the degree of w) modulo the relations

n

∑
j=1

ai j~x j =~c for all i. (1.3)

The situation where Γ ⊆ Γw follows by considering graded matrix factorisations

with respect to a quotient of L.

The A–model is the category DπFS(w̌, Γ̌), which is the (split-closed, derived)

orbifold Fukaya–Seidel category of w̌ : Cn → C, equivariant with respect to the

action of Γ̌ on the total space. In the maximally graded case, taking the split-closure

is not necessary since the (derived) Fukaya–Seidel category has a full exceptional

collection; however, this is not known to be true in the orbifold case. It is worth

noting that the study of orbifold Fukaya–Seidel categories is still in its infancy,

although a definition of a Z2-graded version was given in [CCJ20], which the authors

then use to establish the corresponding Z2-graded version of Conjecture 1 in the

case of curves. The maximally graded case of Conjecture 1 goes back to [T+10] and

[Ued06], and there have recently been many results in the direction of establishing it.

It has been proven in several cases – in particular, for Brieskorn–Pham polynomials

in any number of variables in [FU11], and for Thom–Sebastiani sums of polynomials

of type A and D in [FU13]. For further discussion and background on Conjecture 1,

see [Ebe16], and references therein.
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Recall that the derived category of singularities of a stack X0 is defined to be

the quotient

Db
sing(X0) := Db Coh(X0)/perfX0

of the derived category of coherent sheaves on X0 by the category of perfect com-

plexes (those complexes quasi-isomorphic to bounded complexes of vector bundles).

Buchweitz ([Buc86], cf. Orlov [Orl09, Theorem 39]) showed that when X0 is a

hypersurface in a regular scheme, its singularity category can be expressed in terms

of matrix factorisations of the defining equation. This can be extended to stacks

[PV11, Proposition 3.19] and in our setting we obtain an equivalence of triangulated

categories

HMF(An,Γw,w)→ Db
sing([w

−1(0)/Γw]), (1.4)

where HMF(An,Γw,w) denotes the homotopy category of mf(An,Γw,w). Conjec-

ture 1 therefore relates the algebraic geometry of the singularity w to the symplectic

topology of the singularity w̌.

On the A–side in the maximally graded case, a famous result of Seidel ([Sei08b,

Theorem 18.24]) shows that the Fukaya–Seidel category is generated by Lagrangian

thimbles, and so Conjecture 1 implies that the category mf(An,Γw,w) has a full ex-

ceptional collection of length µ(w̌), the Milnor number of the transpose polynomial.

This is proven in [FKK20]. In fact, this collection is conjectured to also be strong

([HO18, Conjecture 1.3]), which would imply the following:

Conjecture 2 ([LU18, Conjecture 1.3]). Let w be an invertible polynomial with

maximal symmetry group Γw. Then, mf(An,Γw,w) has a tilting object E .

Recall that an object E ∈mf(An,Γw,w) is tilting if

• Endi(E) = 0 for all i > 0, and

• hom•(E ,X) = 0 implies X ' 0.
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If such a tilting object E exists, then it implies that mf(An,w,Γw)' Db(end(E)op),

allowing the computation of the category of matrix factorisations as the category

of modules over an algebra. Since the A–model is known to have a tilting object, a

common strategy for proving mirror symmetry, and the strategy which we in fact

follow, is to prove that the B–model has a tilting object, and then match it with that

of the A–model.

The stronger claim that mf(An,Γw,w) has a full, strong, exceptional collection

was proven for all chain-type invertible polynomials in [HO18]. It was also proven

in [Kra19] for n≤ 3 variables. Moreover, Kravets’ proof is constructive, and should

also be adaptable to higher dimensions. It would be interesting to study analogues of

Conjecture 2 in the case of non-maximally graded symmetry groups, since in this

case it is not known whether the relevant orbifold Fukaya–Seidel category of the

mirror pair, (w̌, Γ̌), possesses a full exceptional collection.

As well as the homological mirror symmetry statement for the Landau–Ginzburg

models (w,Γ) and (w̌, Γ̌), it is natural to study the corresponding mirror symmetry

statement for the Milnor fibre of w̌. In particular, we define

V̌ := w̌−1(1)

to be the (completion of) the Milnor fibre of w̌. This differs from the usual definition

of the Milnor fibre, although is equivalent, since all invertible polynomials under

consideration are tame (see Lemma 2.2.2) and have only one critical point. On the

B–side, the action of Γ is extended to An+1 in a prescribed way (see (2.11)). In

[LU18], Lekili–Ueda made the following conjecture:

Conjecture 3 ([LU18, Conjecture 1.4]). For any pair of invertible polynomials w,

w̌, and admissible subgroup Γ ⊆ Γw with corresponding dual group Γ̌, there is a
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quasi equivalence

DπW([V̌/Γ̌])'mf(An+1,Γ,w+ x0x1 . . .xn).

of Z-graded pre-triangulated A∞-categories over C.

Here, mf(An+1,Γ,w+ x0x1 . . .xn) is the dg-category of Γ–equivariant matrix

factorisations of w+x0 . . .xn on An+1. In the maximally graded case, this conjecture

was recently established in the case of n≥ 3 for all simple singularities in [LU21],

and a Z2-graded equivalence was given for the Milnor fibre of any invertible polyno-

mial in [Gam20]. Recently, a proof of the Z-graded version of the conjecture in the

maximally graded case was given in [Li21] for Brieskorn–Pham polynomials of the

form x2
1 + x2

2 + xp3
3 + · · ·+ xpn

n .

In the case of invertible polynomials of log general type, an adaptation of

Orlov’s theorem to the present setting gives a quasi-equivalence:

mf(An+1,Γ,w+ x0x1 . . .xn)' Db Coh(Zw,Γ), (1.5)

where

Zw,Γ :=
[(

SpecC[x0,x1, . . . ,xn]/(w+ x0x1 . . .xn)\ (000)
)
/Γ
]
. (1.6)

The generalisation to the case where Γ is a finite extension of C∗ is straightforward,

and the extension to the setting of dg-categories was studied in [Shi12], [Isi10],

[CT13]. There is no such equivalence for the log Calabi–Yau and log Fano cases

since extending the action of Γ to An+1 in these cases doesn’t have strictly positive

weights.

It is known that the subcategory perfZw,Γ ⊆ Db Coh(Zw,Γ) consists precisely of

compact objects ([HR17]), since Zw,Γ is a proper stack with finite stabilisers. On the

symplectic side, it is clear that compact Lagrangians yield compact objects in the
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category. On the other hand, it is not known in general that the compact objects in

the category are precisely the compact Lagrangians (cf. [Gan21]); however, this is

the case in all known circumstances. In the equivariant setting, morphisms should

be given by the Γ̌-invariant morphisms of the standard morphisms. Therefore, in

the case that the (derived) Fukaya category is precisely the compact objects in the

(derived) wrapped Fukaya category, Conjecture 3 in the log general type case would

imply an equivalence

DπF([V̌/Γ̌])' perfZw,Γ. (1.7)

In the maximally graded case, the first instance of this was given in [LP11b] for

x3
1 + x2

2. The equivalence was subsequently establish in the cases of w = ∑
n
i=1 xn+1

i

and w = x2
1 +∑

n
i=2 x2n

i , both for any n > 1, in [LU18].
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1.2 Statement of results
Chapter 3 is based on joint work with Jack Smith, [HS20], and we study Conjecture

1 in the maximally graded case. Our main result is:

Theorem 1 (Theorem 3.1.1). Conjecture 1 is true in the case of Γ = Γw and n = 2.

As part of the proof, we construct a full exceptional collection on the B–side

whose length is µ(w̌), and show that the direct sum of these objects is tilting, thus

confirming Conjecture 2 in the maximally graded case and n = 2.

Theorem 2 (Theorem 3.1.2). Conjecture 2 is true in the case of Γ = Γw and n = 2.

In Chapter 4, which is based on [Hab], we build on a strategy of Lekili and

Ueda in [LU18] to deduce the quasi-equivalence (1.7) in the maximally graded case.

Our main result is

Theorem 3 (Theorem 4.1.1). Let w be an invertible polynomial in two variables with

maximal symmetry group Γw, and w̌ its transpose. Then there is a quasi-equivalence

DπF(V̌ )' perfZw,Γw

of Z-graded pre-triangulated A∞-categories over C, where Zw,Γw is as in (1.6),

V̌ := w̌−1(1) is the Milnor fibre of w̌, and DπF(V̌ ) and perfZw,Γw are as in Section

1.3.

A key step in the proof Theorem 3 is to eliminate the potential mirrors by

showing that their Hochschild cohomology isn’t isomorphic to the symplectic coho-

mology of the Milnor fibre. In order to do this, the Milnor fibres are reconstructed

by an explicit gluing procedure, allowing the symplectic cohomology to be easily

computed. These computations suggest a more general pattern of HMS which should

include Milnor fibres of invertible polynomials as a special case. In Chapter 5, which

is based on [Hab21], we show that this is indeed true, establishing the following

theorem:



1.2. Statement of results 29

Theorem 4 (Theorem 5.1.4 ). Let w be an invertible polynomial in two variables

with admissible symmetry group Γ⊆ Γw and corresponding dual group Γ̌. Then, the

action of Γ̌ on V̌ is free, and there are quasi-equivalences

DπF(V̌/Γ̌)' perfZw,Γ

DπW(V̌/Γ̌)' DbCoh(Zw,Γ)

of Z-graded pre-triangulated A∞-categories over C.

Remark 1.2.1. It should be reiterated that, although the quotients of the Milnor fibre

by the dual group Γ̌ should a-priori be a stack, in the case at hand the quotient is a

genuine manifold and standard techniques in symplectic geometry can be applied.

As already mentioned, Theorem 4 is a special case of a more general HMS

result, in particular regarding rings and chains1 of certain Deligne–Mumford stacks,

generalising the work of Lekili and Polishchuk [LP17b]. In particular, we consider

Deligne–Mumford stacks whose irreducible components meet nodally and are

allowed to have a generic stabiliser given by the cyclic group µd . Additionally, we

demand that the underlying orbifold2 of an irreducible component be a weighted

projective line of the form Pa,b. This is the orbifold whose coarse moduli space is

P1, and such that the point 0 has a stabiliser of µa and ∞ has a stabiliser of µb. In

the case that gcd(a,b) = 1, this is
[(
C2 \

(
0,0)

))
/C∗

]
, where C∗ acts with weights

a and b on the coordinates x and y, respectively. The case of general a and b is

discussed in Section 5.2.

In what follows, we let Pri,−,ri,+ denote the orbifold P1 with precisely two

distinct orbifold points (qi,−,qi,+) such that Aut qi,− ' µri,− and Aut qi,+ ' µri,+ .

Here, the subscript ± refers to which end of the orbifold the points qi,± are at; we

have that the point qi,+ ∈ Ci intersects Ci+1 at qi+1,−. In the case of a chain of curves,

1In this thesis, we will use the word chain to refer to both a cycle of (stacky) projective lines
which are in an An-configuration, as well as an invertible polynomial of chain type (whose B–model
is in fact a ring of curves). We hope that this distinction is clear from context.

2Recall that an orbifold is a Deligne–Mumford stack with trivial generic stabiliser, and that the
underlying orbifold results from ‘removing’ the generic stabiliser (cf. Section 5.2).
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we also allow r1,− = 0, or rn,+ = 0, so that the corresponding irreducible component

is a (stacky) A1. The irreducible components of the curve are notated as Ci, and their

generic stabiliser groups as µdi .

In addition to what the irreducible components are, a crucial piece of information

is how the nodes are locally presented. Namely, if Hi is the isotropy group of the node

where the irreducible components Ci and Ci+1 meet, then there exists a surjective map

Hi→ µri,+ whose kernel is a torsor for µdi and a surjective map Hi→ µri+1,− whose

kernel is a torsor for µdi+1 . Rephrased, this says that Hi is able to be constructed

as an extension of µri,+ by µdi and an extension of µri+1,− by µdi+1 . Note that the

extension class is not part of the data – one can only conclude the isomorphism class

of the extensions as complexes. The groups Hi are abelian metacyclic groups.

Remark 1.2.2. It is worth reiterating the subtle difference in terminology here

between ‘equivalence of extensions’ and ‘isomorphism of complexes’. The first is

the usual notion of equivalence of extension, which requires a chain map between

extensions to be the identity on the first and third groups. The second notion is an

isomorphism of extensions in the category of chain complexes, meaning that the

chain map on the first and third terms must only be an isomorphism. In particular,

two abelian extensions of cyclic groups are isomorphic as complexes if and only if

the middle term in the extensions are isomorphic. This is clearly a much weaker

notion than two extensions being equivalent. Correspondingly, we will take care

to be precise in using the terms ‘equivalence of extensions’ and ‘isomorphism of

complexes’ in this thesis.

Example 1.2.3. The group µ8×µ2 can be viewed as a non-trivial extension of µ4

by µ4, and as the trivial extension of µ8 by µ2. In the former case, there are two

inequivalent extensions which yield µ8×µ2, although both extensions are isomorphic

as complexes.

Given an intersection of Ci and Ci+1, this is modelled locally as the stack

quotient of {xy = 0} by Hi. How the group Hi acts will be important; it is possible
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to have the same intersection point with different actions by Hi yielding non-derived

equivalent categories of Hi-equivariant sheaves.

. . .

Figure 1.1: A chain of n curves. Each irreducible component has generic stabiliser µdi , and
the intersection of Ci and Ci+1 has isotropy group Hi. An analogous picture can be drawn for
a ring of curves by intersecting the first and last irreducible components.

Example 1.2.4. For a simple example which captures the key points of the construc-

tion, consider

{xy = 0} ⊆ P(d1,d2,d3),

where gcd(d1,d2,d3) = 1. This is a chain of curves with two components. The

component C1 = {x = 0} has generic stabiliser gcd(d2,d3), whilst the curve C2 =

{y = 0} has generic stabiliser gcd(d1,d3). The node |C1| ∩ |C2| = [0 : 0 : 1] is

presented as the quotient of {xy = 0} by µd3 acting as

t · (x,y) = (td1x, td2y).

In general, one does not need to present the curves as being hypersurfaces in a

weighted projective plane, and can consider the intersection of two abstract curves.

To get a chain of curves with more components, we intersect the point at infinity of C2

with the zero of another curve, C3, and similarly with C4 etc. To get a ring of curves,

we close up a chain by intersecting C1 with Cn.

Theorem 5. [Theorem 5.1.1] Let C be a Deligne–Mumford stack such that:

• The coarse moduli space of C is a ring or chain of n P1’s.

• Each irreducible component, Ci, has underlying orbifold Pri,−,ri,+ and generic

stabiliser µdi such that ri,+di = ri+1,−di+1 (we allow r1,− and/ or rn,+ = 0 in

the case of a chain of curves).
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• The node qi := |Ci|∩|Ci+1| has isotropy group Hi, an abelian metacyclic group,

and is presented as the quotient of SpecC[x,y]/(xy) by Hi, where the action is

given by

h · (x,y) = (ψi,+(h)x,ψi+1,−(h)y)

for some surjective ψi,+ : Hi→ µri,+ and ψi+1,− : Hi→ µri+1,− .

Then

Db(AC−mod)' DbW(Σ;Λ)

is a Z-graded quasi-equivalence of pre-triangulated A∞-categories over C, where Σ

is a Z-graded, b-times punctured surface of genus g such that the genus, boundary

components, and collection of stops, Λ⊆ ∂Σ, are determined by the ri,±, di, and the

local presentation of the nodes as the quotient by Hi.

In the above, Db(AC−mod) is the bounded derived category of (left) modules

of a certain sheaf of non-commutative OC-algebras, first introduced in [BD09],

and DbW(Σ;Λ) is the derived partially wrapped Fukaya category with respect to

the collection of stops Λ ⊆ ∂Σ ([Aur10], [Syl16]). As part of the proof of this

theorem, we show that TwW(Σ;Λ) has a full, strong, exceptional collection, so is

automatically split-closed ([Sei08b, Remark 5.14]).

The category Db(AC−mod) (resp. DbW(Σ;Λ)) admits a functor to Db Coh(C)

(resp. DπW(Σ)) which is given by localising at a certain full subcategory. We show

that these categories are identified with each other under the equivalence of Theorem

5. By localising on both sides and also characterising the inclusion of perfC in

Db(AC−mod) (resp. DπF(Σ) in DbW(Σ;Λ)) we find:
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Theorem 6. [Theorem 5.1.3] Let C and Σ be as in Theorem 5. Then

perfC ' DπF(Σ)

Db CohC ' DπW(Σ),

are quasi-equivalences of Z-graded pre-triangulated A∞-categories over C in the

case of a ring of curves. In the case of a chain of curves, there are quasi-equivalences

of Z-graded pre-triangulated A∞-categories over C

perfcC ' DπF(Σ;(r1,−)
d1 ,(0)b−d1−dn,(rn,+)

dn)

Db Coh(C)' DπW(Σ;(r1,−)
d1,(0)b−d1−dn,(rn,+)

dn),

where perfcC is the full subcategory of perfC consisting of objects with proper

support.

In the above, DπF(Σ;(r1,−)
d1,(0)b−d1−dn ,(rn,+)

dn) is the (derived) infinitesi-

mally wrapped Fukaya category ([NZ06], cf. [GPS18]). To reiterate, the motivation

for studying the curves appearing in Theorems 5 and 6 is that this class of curves

includes the B–models of invertible polynomials in two variables. It is then a

consequence of these theorems which establishes the remaining cases of Theorem 4

not covered in Chapter 4.

As a corollary of our main theorems, we establish derived equivalences between

certain curves appearing in the B–model of Conjecture 3.

Corollary 1. [Corollary 5.1.5] For each n≥ 1 and q≥ 2, let wloop = xn(q−1)+1y+

yqx and wchain = xnq+1y+ yq, each with the maximal symmetry group. We then have

quasi-equivalences

Db Coh(Zwloop)' Db Coh(Zwchain)

of Z-graded pre-triangulated A∞-categories over C.
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Similarly, for each n ≥ 1 and p ≥ 2, or n ≥ p = 2, let w′chain = xpy+ yn(p−1),

wBP = xp + ynp, each with the maximal symmetry group. We then have quasi-

equivalences

Db Coh(Zw′chain
)' Db Coh(ZwBP)

of Z-graded pre-triangulated A∞-categories over C.

This corollary was previously proven in [FK19, Corollary 5.15] using purely

algebro-geometric means. Our proof is obtained by first showing that the Milnor

fibres corresponding to the relevant Berglund–Hübsch transposes are graded symplec-

tomorphic, implying that their Fukaya categories are quasi-equivalent. By Theorem

4, this proves that the derived categories of sheaves of their mirrors are too.

1.3 Conventions
We work over C throughout. For a two dimensional Liouville manifold Σ with

stops on the boundary Λ⊆ ∂Σ, we refer to the split-closed derived Fukaya, wrapped

Fukaya, and partially wrapped Fukaya categories as DπF(Σ) and DπW(Σ), and

DπW(Σ;Λ), respectively. We refer to the derived Fukaya –Seidel category of

w̌ : Cn→ C as DbFS(w̌). For a Deligne–Mumford (DM) stack X we write x ∈ X

to mean x : SpecC→X , and let |X | be its underlying topological space. We denote

the bounded derived category of coherent sheaves, its full subcategory of perfect

complexes, considered as pretriangulated dg-categories, as Db Coh(X ) and perfX ,

respectively. We refer to a DM stack with trivial generic stabiliser as an orbifold. For

a sheaf of algebras A, we denote the bounded derived category of finitely generated

left modules, considered as a pretriangulated dg-category, as Db(A−mod). By Zn

we mean Z/nZ, and by Z(2) we mean the local ring of rational numbers with odd

denominator. All (co)homology groups are assumed to have coefficients in Z unless

otherwise specified.
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Preliminaries

In this chapter, we briefly review the relevant material on the various flavours of

Fukaya categories which will need, as well as the background material on invertible

polynomials. Everything in this chapter is well-known – comprehensive references

for the symplectic geometry are [CE12], [Sei08b], [AS07], [Aur10], and [Syl16],

and references for invertible polynomials include [Kra10], [LU18], and [T+10].

In this thesis, all of the Fukaya categories we consider will not have orbifold

structures, and so we do not review the background of the various orbifold Fukaya(–

Seidel) categories. The interested reader can find a definition of an orbifold Fukaya

category in [Sei11] for the case of curves, and the definition of the wrapped Fukaya

category of an orbifold is given in [CCJ20, Definition 4.7]. Building on this, the

authors of [CCJ20] give a definition of an orbifold Fukaya–Seidel category ([CCJ20,

Theorem 4.14 and Definition 4.15]), and conjecture ([CCJ20, Conjecture 5.6]) that it

agrees with the standard definition of the Fukaya–Seidel category which is outlined

here in the case that the quotient group is trivial.

2.1 Symplectic preliminaries
We begin this section by introducing the categories arising in symplectic geometry

which will be of most interest in this thesis. We first introduce the various Fukaya

categories which are associated to Liouville manifolds before reviewing some Picard–



36 Chapter 2. Preliminaries

Lefschetz theory and the Fukaya–Seidel category.

2.1.1 Fukaya categories of exact symplectic manifolds

Throughout this thesis, the symplectic manifolds of interest will be examples of

Liouville manifolds, which are, in particular, exact. We therefore restrict ourselves

to this case in our exposition of Fukaya categories and do not discuss some of

the subtleties which are relevant in the non-exact setting. Moreover, we will not

discuss technical issues in detail which arise in Floer theory such as, for example,

transversality and compactness issues, relative gradings, or the orientations of moduli

spaces. For a complete and detailed construction of Floer theory, as well as a

comprehensive account of the relevant homological algebra, we refer to the book

[Sei08b]. A very nice and accessible introduction to the subject can be found at

[Aur14].

2.1.1.1 Liouville manifolds

As already mentioned, all of the manifolds which will be considered in this thesis

are examples of Liouville manifolds. The topology and geometry of these manifolds

is of great interest in all areas of symplectic topology, and we refer to [CE12] for a

detailed account. To begin with, we define a Liouville domain to be a pair, (M,λ ),

such that

1. M is a compact 2n-dimensional manifold with contact boundary,

2. λ is a one-form such that dλ = ω is a symplectic form for M and λ |
∂M = α is

a contact form on ∂M, where the orientation defined by α∧dαn−1 agrees with

the orientation as the boundary of M. The one-form λ is called the Liouville

form.

To each Liouville domain there is a vector field X defined as the ω-dual to λ , meaning

the vector field X such that

ιX ω = λ .
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Moreover, this vector field intersects ∂M transversally and points outwards. We

define a Liouville manifold as the completion of the Liouville domain by attaching

cylindrical ends, i.e.

M = M∪
∂M (∂M× [1,∞)),

and extend the Liouville form λ to the attached ends by defining it to be er(λ |
∂M),

where r is the coordinate on [1,∞). The two notions of Liouville domain and

manifold are intimately linked, and we will frequently pass between the two.

A compact exact Lagrangian submanifold of a Liouville manifold L⊆M is a

Lagrangian submanifold such that the Liouville form has a primitive when restricted

to L, i.e. λ |L = d f for some f ∈ C∞(L). In this thesis, we will never consider

Lagrangians which are not exact. As explained in, for example, [Aur14, Remark

1.7], exactness will allow us to avoid the necessity of working over a Novikov field

when constructing Floer complexes and work directly over the complex numbers

instead.

A key piece of additional data on a symplectic manifold is a grading [Sei00],

[Sei08b, Section 11j]. The important point is that a symplectic manifold (M,ω) is

gradable if and only if 2c1(M) = 0, and a grading is a choice of trivialisation of

K⊗−2
M . Choosing a grading defines a lift of the Lagrangian Grassmannian bundle

over M, LGr(T M), to its fibrewise universal cover L̃Gr(T M). Given a grading on

M, we say that a Lagrangian is graded if the natural map

L→ LGr(T M)

x 7→ TxL

lifts to L̃Gr(T M). Given a (transverse) intersection point p ∈ L1 t L2, one can then

define deg p as the winding number of a path in LGr(TpM) connecting TpL1 to TpL2

determined by the lifts of the respective tangent spaces to L̃Gr(TpM). We discuss
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the issue of grading in more detail in Section 3.3.7 and 4.3.1, focusing on the case at

hand of symplectic surfaces. The take-home message is that grading Lagrangians

will allow one to give the Floer complex a Z-grading.

Remark 2.1.1. It should be emphasised that computing the degree of a point p ∈

L1 t L2 is not the same as computing the degree of the same point, considered as

an intersection L2 t L1. Indeed, if p ∈ L1 t L2 has degree i, then p ∈ L2 t L1 has

degree n− i for n = dimRL.

2.1.1.2 Fukaya categories of compact Lagrangians

Given a graded Liouville manifold, one of the central objects of study is the Floer

complex, which is a differential graded algebra associated to the intersection of two

graded, exact, Lagrangians Li equipped additionally with spin structures and flat

complex line bundles Li→ Li with unitary holonomy (i.e. rank one unitary local

systems). We call such a tuple of data a Lagrangian brane. The inclusion of a local

system as part of the data is not always necessary, depending on the applications one

has in mind; however, this enriched version will be necessary when one considers

mirror symmetry. Assuming transversality of intersections, we define a Z-graded

vector space as

CFi(L1,L2) =
⊕

p∈L1tL2

homi−deg p(L1|p,L2|p),

and take CF•(L1,L2) to be the direct sum of these graded pieces. One of the features

of Floer theory is that it is invariant under Hamiltonian isotopy, meaning isotopies

induced from the flow of a Hamiltonian vector field. This provides us with a method

of circumventing transversality issues in the case where L1∩L2 is not transverse.

Namely, one can Hamiltonian isotope L1 by considering the image under the time

one flow of H, denoted by ϕ1
H , such that it intersects L2 transversally. We then define

the Floer complex as being the sum over the intersection points of ϕ1
H(L1) t L2.

It is a remarkable property of Floer theory that the Floer cochain complexes
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come with maps3

µn : CF•(Ln−1,Ln)⊗CF•(Ln−2,Ln−1)⊗·· ·⊗CF•(L0,L1)→ CF•(L0,Ln)[2−n],

(2.1)

which satisfy the A∞-equations [Sei08b, Equation 1.2]. This was initially proven

by Fukaya in [Fuk93], resulting in the A∞-category whose objects are Lagrangian

branes and morphisms are Floer cochain complexes bearing his name.

To define these maps, equip M with an ω-compatible4 almost complex struc-

ture J, let Dn+1 be the disc with the n + 1 cyclically ordered points ξ0, . . . ,ξn

removed, and suppose pi ∈ Li−1 t Li for i = 1, . . . ,n and q ∈ L0 t Ln. Roughly

speaking, parallel transport along the boundary of the disc, together with the el-

ements hom(Li−1|pi,Li|pi) corresponding to Li−1 t Li, determines an element in

hom(L0|q,Ln|q) whose coefficient in µn(p1, . . . , pn) is the signed count of rigid

J-holomorphic5 discs such that the puncture at ξi for 1≤ i≤ n is mapped to pi, the

puncture at ξ0 is mapped to q, and the boundary between ξi and ξi+1 is mapped to Li.

The brane structure determines the sign of this count. Of course, there are numerous

transversality and compactness issues which need to be addressed, although we defer

to [Sei08b, Chapter 12] for the details when local systems are not included; the case

where local systems are included follows by the same arguments by keeping track of

twisting by the contributions from the line bundles.

Of particular note is that the first A∞-equation states that µ1 is a degree one

map such that µ1 ◦µ1 = 0, i.e. is a differential. With this, one can define the Floer

3Composition is done right-to-left.
4Recall ω-compatible means that ω(·,J·) is a Riemannian metric, such an almost complex

structure always exists, and that the space of ω-compatible almost complex structures is non-empty
and contractible [MS98, Section 4.1].

5A disc u : Dn+1 → M is J-holomorphic if it satisfies Floer’s equation (for example, [Sei08b,
Equation 8.9]).
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cohomology groups

HF•(L1,L2) = H•(CF•(L1,L2),µ1).

Related to Remark 2.1.1, there is a natural Poincaré duality isomorphism

HFi(L1,L2)' HFn−i(L2,L1)
∨, (2.2)

induced by the non-degenerate pairing

HFn−i(L2,L1)⊗HFi(L1,L2)→ HFn(L1,L1)' Hn(L1;C)' C.

We are now in a position to define the Fukaya category. For (M,λ ) a Liouville

manifold, the Fukaya category of compact Lagrangian branes, denoted by F(M) is

as follows:

• The objects of F(M) are compact Lagrangian branes.

• The morphisms are defined as

homF(M)(Li,L j) := CF•(Li,L j).

This is an A∞-category with structure maps given by (2.1).

The main invariant we will be interested in will be the derived Fukaya category,

which we define to be the pretriangulated6 A∞-category over C

DπF(M) := TwπF(M).

Here TwπF(M) is the split-closure7 of the category of twisted complexes of F(M)

([Sei08b, Chapter 3l]), which is its split-closed pretriangulated envelope.
6Recall that a category is pretriangulated if its homotopy category is canonically triangulated.
7Recall that a category is split-closed if it contains all images of idempotent endomorphisms. The

split closure is a formal enlargement to include such objects, and always exists for an A∞-category
[Sei08b, Lemma 4.7].
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Remark 2.1.2. • We should reiterate that all derived categories considered

in this thesis will be the appropriate A∞- or, equivalently, dg-enhancements.

Some authors (for example, in [Kon95] and [PZ98]) define the derived Fukaya

category as H0(TwπF(M)), yielding a triangulated category in the classical

sense; however, it is more common in modern approaches to homological

mirror symmetry to work with pretriangulated, rather than triangulated, cate-

gories. Such categories are also referred to as ‘triangulated A∞-categories’

(for example, in [Sei08b] and [She15]). Either way, the point is that the A∞-

structure of the category is crucial information, and this is not remembered

when passing to the homotopy category.

• There are certain circumstances where the category of twisted complexes of

a Fukaya category is already split-closed, such as when the category has a

full exceptional collection ([Sei08b, Remark 5.14]). For an A∞-category A

such that TwA is already split closed, taking the split closure does nothing.

Therefore, there is no harm in defining the Dπ(A ) as Twπ A and including the

cases when TwA is already split-closed in this definition. We will, however,

write Db(A ) = TwA when we work with a specific category which is known

to be split closed (for example, when TwA has a full exceptional collection).

2.1.1.3 Wrapped Fukaya categories

The second flavour of Fukaya category we will be interested in is the wrapped

Fukaya category, as introduced in [AS07], which is denoted byW(M). It contains

F(M) as a full subcategory, as well as non-compact admissible Lagrangian branes,

which we define below.

We call a non-compact, orientated, exact Lagrangian L ⊆M admissible if L

coincides with (1,∞)× ∂L on the non-compact ends of M for ∂L ⊆ ∂M a Legen-

drian submanifold. A brane structure on an admissible Lagrangian is the additional

data of a grading and spin structure. There is a generalisation due to Abouzaid

([Abo10]) which equips non-compact Lagrangian branes with local systems. Strictly
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speaking, this is the version of the wrapped Fukaya category which we make use of;

however, since all non-compact Lagrangians which we consider in this thesis will be

simply connected, any local system on it must be trivial, and wrapped Floer theory

reduces to the case of [AS07]. We will therefore not notate the local systems on the

non-compact Lagrangians, although note that they are present in the computation of

the Floer cochain complexes associated to intersection points contained entirely in

the interior of M.

As already noted, one is free to do Floer theory up to Hamiltonian isotopy. In

the case of wrapped Floer cochain complexes, the Hamiltonian vector fields whose

flow yields the desired isotopy must be of a specific form in order to obtain the

required a-priori bounds on J-holomorphic curves required for Floer theory. Namely,

outside of a compact set, the Hamiltonian must be of the form

H = r2,

where r is again the coordinate on [1,∞) of the cylindrical end of the Liouville

manifold. In particular, the corresponding Hamiltonian vector field must be

XH = 2rRα .

where, as before, α = λ |
∂M is the contact form on ∂M and Rα is its Reeb vector field.

Let L1, L2 be non-compact Lagrangian branes and X(L1,L2) the set of time

one Hamiltonian flow lines of H which start on L1 and end on L2. Analogously

to the case of grading geometric intersection points, grading the Lagrangians L1

and L2 determines a degree for each x ∈ X(L1,L2). The set X(L1,L2) is equivalent

to the number of geometric intersection points of ϕ1
H(L0)∩ L1, where ϕ1

H is the

time one flow associated to XH . Rephrasing, this is the number of (perturbed by

H) intersection points of L0 and L1 which are contained in M, together with Reeb

chords of arbitrary length between ∂L0 and ∂L1 in ∂M. It is this latter perspective
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which we will find most useful – in practice, we will compute morphisms between

non-compact Lagrangians in a Liouville manifold by counting the number of Reeb

chords8 of arbitrary length between their respective boundaries in the boundary of

the Liouville domain, as well as any geometric intersection points in the interior.

As a vector space, the wrapped Floer cochain complex for L1,L2 non-compact

admissible Lagrangians is defined as

CWi(L1,L2) =
⊕

x∈X(L1,L2)
degx=i

C · x.

The construction of the A∞ structure maps in the wrapped case is heuristically

analogous to the structure maps for compact Lagrangians. Namely, they are defined

by counts of rigid J-holomorphic discs with prescribed boundary conditions; how-

ever, we refer to [AS07] for the details of the construction. The case of morphisms

between a compact and non-compact Lagrangian is computed entirely within M, as

in the case of the intersection of two compact Lagrangians.

The wrapped Fukaya categoryW(M) is defined as

• The objects are

– The compact Lagrangian branes as in the Fukaya category of compact

objects, and

– The non-compact admissible Lagrangian branes

• The morphisms are

homW(M)(L1,L2) =

 CW•(L1,L2) if both Li are non-compact, and

CF•(L1,L2) it at least one Li is compact.
8We assume that Reeb chords between ∂L0 and ∂L1 are non-degenerate, otherwise one must

perturb the Hamiltonian H to achieve this. This is analogous to perturbing intersections by a
Hamiltonian to achieve transversality in the Floer theory of compact Lagrangians.



44 Chapter 2. Preliminaries

As in the case of the Fukaya category of compact objects, our primary interest will

be in the derived wrapped Fukaya category, where we define

DπW(M) := TwπW(M).

2.1.1.4 Partially wrapped Fukaya categories

The final flavour of Fukaya category which will be important to us is the partially

wrapped Fukaya category. This category was originally introduced by Auroux

[Aur10], and studied in generality by [Syl16]. We restrict ourselves to the case of

surfaces with boundary here, which not only simplifies the exposition, but it is also

the only case which will be relevant to us in this thesis.

Let (Σ,λ ) be a two dimensional Liouville domain, i.e. a compact surface with

boundary such that each boundary component is diffeomorphic to S1. Let Λ⊆ ∂Σ be

a collection of stops on the boundary, which is simply a collection of points in this

case. Then, the partially wrapped Fukaya category,W(Σ;Λ) is defined as follows:

• ObW(Σ;Λ) = ObW(Σ)

• The morphisms homW(Σ;Λ)(L1,L2) are the same as in the wrapped Fukaya

category, but where Reeb chords from ∂L1 to ∂L2 which pass through a stop

are disallowed.

It is the fact that Reeb chords which pass through stops in the boundary are

disallowed which leads to the name ‘partially’ wrapped Fukaya category (and also

the name ‘stop’); indeed, one can recover the wrapped Fukaya category as the

partially wrapped Fukaya category with Λ = /0. Moreover, by including enough

stops, all morphism spaces must be cohomologically finite, meaning, by definition,

that the category is proper.
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We define the derived partially wrapped Fukaya category as

DπW(Σ;Λ) := TwπW(Σ;Λ).

This is an extremely useful intermediate category between the Fukaya category of

compact Lagrangians and the wrapped Fukaya category. In particular, the former

category is proper, but does not contain enough objects to be homologically smooth9.

The latter category, on the other hand, is homologically smooth ([Gan12]), but not

proper.

Given a collection of stops Λ′ ⊆ Λ, there is a stop-removal functor

DπW(Σ;Λ)→ DπW(Σ;Λ
′)

which is given by localising at Lagrangians supported near the stops ([Syl16, Theo-

rem 4.21] in generality, and [HKK14, Proposition 3.6] for the case of surfaces). In

particular, this gives a functor to the (derived) wrapped Fukaya category of Σ.

A powerful theorem due to Haiden, Kontsevich, and Katzarkov ([HKK14]) is

that, for a surface, one can always choose a collection of stops Λ such that there

exists a generator
⊕

i Li of DbW(Σ;Λ) whose endomorphism algebra

A := end(
⊕

i

Li)

is formal, meaning that all A∞-structure maps are zero except for µ2 (which is the

product on the algebra). Moreover, it is shown in [HKK14, Corollary 3.1] that the

resulting category Db(Aop) ' DbW(Σ;Λ) is smooth and proper. This reduces the

study of derived partially wrapped Fukaya categories to categories of modules over

an algebra. Moreover, it means that the derived partially wrapped Fukaya category

is a categorical resolution of the derived Fukaya category of compact Lagrangians,

9Recall a category is homologically smooth if it is perfect as a bimodule over itself.
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where the functor

DπF(Σ)→ DbW(Σ;Λ)' Db(Aop)

is induced from the inclusion on objects.

Combining localisation with the fact that one can find a collection of stops and

generating collection such that Db(Aop)' DbW(Σ;Λ) gives a functor

Db(Aop)→ DπW(Σ),

which can be used to understand the more complicated derived wrapped Fukaya

category.

We end this subsection with the comment that, although our discussion of par-

tially wrapped Fukaya categories was restricted to case of surfaces for convenience,

and because this is the relevant case for us, the theorem of Haiden, Katzarkov, and

Kontsevich is specific to this dimension. An analogous theorem in higher dimensions

would be an extremely useful tool.

2.1.2 Background on Picard–Lefschetz theory

We begin this subsection by studying some topological properties of polynomial

maps f : Cn→ C by first introducing the notion of the Milnor fibre of a singularity.

This is closely related to the notion of a Lefschetz fibration, which is the central

object of study in Picard–Lefschetz theory. Roughly speaking, the Milnor fibre

records how a singularity degenerates, and Picard–Lefschetz theory can be viewed as

a complex analogue of Morse theory. Our main references for the classical treatment

of Picard–Lefschetz theory are [AIG+98] and [Mil68]. As in the case of Fukaya

categories of Liouville manifolds, a detailed treatment of Picard–Lefschetz theory

can be found in [Sei08b].

Definition 2.1.3 ([AIG+98, Chapter 1.4]). Let [ f ] ∈ C[[x1, . . . ,xn]] be the germ at
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the origin of a non-constant polynomial f : Cn→ C such that d f |0 = 0. We define

the Jacobian of [ f ] as

Jac[ f ] := C[[x1, . . . ,xn]]/〈∂x1 f , . . . ,∂xn f 〉,

and the Milnor number as

µ([ f ]) := dimC Jac[ f ].

We say that f has an isolated hypersurface singularity at the origin if µ([ f ])< ∞.

Remark 2.1.4. i) The above definition of Jacobian and Milnor number is inde-

pendent of the representative of germ ([AIG+98, Chapter 1.4]). Moreover, in

the case when the only critical point of f : Cn→ C is at the origin, it is not

necessary to complete the Jacobian algebra before computing its dimension, so

we write µ( f ) for its Milnor number. By an abuse of notation, we will refer to

the polynomial f as having an isolated hypersurface singularity, rather than the

equivalence class of germ at the origin which it defines.

ii) The above definition can be extended to general holomorphic functions

([AIG+98, Chapter 1]); however, the case of polynomials will suffice for us.

Theorem 2.1.5 ([Mil68, Theorem 4.8]). Let f : Cn→ C have an isolated hypersur-

face singularity at the origin. Then, there exists ε0 > 0 such that

Sε(0) t f−1(0)

for any ε < ε0, where Sε(0) is the sphere of radius ε centred at the origin, and that

there is a smooth fibration

ϕ : Sε(0)\ f−1(0)→ S1

x
f (x)
| f (x)|

.

Moreover, the smooth fibre of this mapping is independent of ε and ε0.
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The smooth fibre of this fibration, denoted by Vf , is known as the Milnor fibre

of the singularity. It captures information about the topology of a fibre close to the

singularity, as well as how this fibre degenerates. Moreover, it is a Liouville domain

as defined in Section 2.1.1.1, where the Liouville form is given by the restriction of

the standard Liouville form

λCn =

√
−1
4

n

∑
i

zidzi− zidzi

on Cn. The way in which the Milnor fibre captures the behaviour of a function as it

degenerates into a singularity is elucidated by the following theorem of Milnor:

Theorem 2.1.6 ([Mil68, Theorem 5.11]). Let f have an isolated hypersurface sin-

gularity at the origin, and ε0,ε > 0 as in Theorem 2.1.5. Then, for c > 0 sufficiently

small, the manifold

f−1(c)∩Bε(0)

is diffeomorphic to Vf = ϕ−1(arg(c)), where Bε(0) is the ball of radius ε centred at

the origin.

Smoothly, the Milnor fibre Vf is independent of all choices. It is a remarkable

result of Milnor [Mil68, Theorem 6.5] that the Milnor number entirely controls the

topology of the Milnor fibre. In particular, he showed that there is a homotopy

equivalence

Vf '
µ( f )∨
i=1

Sn.

On the other hand, this is far from the end of the story when one considers Milnor

fibres in the symplectic category.

Our main interest will be in the completed Milnor fibre, considered as a sym-

plectic manifold. This is the Liouville manifold constructed from the Liouville

domain defined by the Milnor fibre. By an abuse of notation, we also denote the
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completed Milnor fibre by Vf . The resulting completed Milnor fibre is a Liouville

manifold, and is independent of all choices (including holomorphic representative of

the equivalence class of germ), up to exact symplectomorphism (cf., for example,

[Kea15, Lemmas 2.6 and 2.7]). We will therefore refer to the Milnor fibre of a

singularity.

The second notion which we study will be that of a Lefschetz fibration, which is

the central tool in Picard–Lefschetz theory. For a classical treatment of the subject,

we refer to [AIG+98, Chapter 2]. Floer theory in the context of Lefschetz fibrations

was introduced and systematically studied by Seidel, where a comprehensive account

is provided in [Sei08b]. In particular, we refer to [Sei08b, Section 15d] for the

general definition of a Lefschetz fibration. We will take the working definition to be

a proper holomorphic map

f : X →V ⊆ C,

where X is a complex manifold and V is open, having only Morse critical points10.

Our main interest will be even more elementary. In particular, consider f :

Cn→ C a polynomial map with an isolated hypersurface singularity at the origin

and no other critical points, and assume that it is tame in the sense of [Bro88]. Then,

f̃ : Cn→ C,

where f̃ is any Morsification of f , is a Lefschetz fibration, and

|crit( f̃ )|= µ( f ).

This will be the only case of interest to us, and so we work directly with Lefschetz

fibrations whose domain and codomain are Cn and C, respectively, from now on.

10Recall that Morse critical points are those such that the Hessian is non-degenerate.



50 Chapter 2. Preliminaries

Remark 2.1.7. The number of non-degenerate critical points of any Morsification of

an isolated hypersurface singularity is an equivalent definition of the Milnor number.

For a Lefschetz fibration f : Cn→C, there is a well-defined notion of vanishing

path, vanishing cycle, and Lefschetz thimble. For p ∈ crit( f ) ⊆ Cn, we define a

vanishing path as

γ : [0,1]→ C

such that γ(1) = f (p) and γ(t) /∈ critv( f )⊆ C for all t ∈ [0,1). The corresponding

Lefschetz thimble, ∆γ , is the unique embedded Lagrangian n−ball such that

• f (∆γ) = γ([0,1]),

• f (∂∆γ) = γ(0), and

• ∆γ | f−1( f (p)) = p.

We define the corresponding vanishing cycle as Vγ = ∂∆γ . Equivalently, the van-

ishing cycle Vγ is the unique Lagrangian n−sphere in f−1(γ(0)) which collapses

to p under symplectic parallel transport along γ . There is no reason to assume that

there is at most one critical point in each fibre, although doing so simplifies the

situation. We will therefore assume from now on that this is the case in order to ease

the exposition.

Supposing we have a Lefschetz fibration, choose a distinguished point ∗ ∈

V \ critv( f ). We define a distinguished basis11 of vanishing paths {γ1, . . . ,γN} for

N = |crit( f )| as any collection of vanishing paths such that

• For each i ∈ {1, . . . ,N}, γi(0) = ∗ and γi(1) = pi ∈ critv( f ).

• The paths only intersect at the distinguished point ∗.
11Here, the word ‘distinguished’ does not refer to any sort of canonical choice of basis, but rather,

that the vanishing paths only intersect at the distinguished point ∗.
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• The tangent directions γ̇i(0) at the distinguished point are all distinct in T∗C

and carry a clockwise ordering according to their argument.

All choices made will lead to equivalent categories at the derived level.

Of course, Lefschetz thimbles must be decorated with a brane structure in order

to do Floer theory. Namely, one must equip the Lefschetz thimbles with a grading

and spin structure. Moreover, the brane structure on a vanishing cycle Vi = ∂∆i

must be induced by restricting the brane structure of the Lefschetz thimble to its

boundary12. This is explained in detail in [Sei08b, Section 18e], and we refer there

for a complete construction. What will be most relevant to us is the following:

• The grading of the Lefschetz thimbles is with respect to the canonical (and

unique up to homotopy) grading of Cn given by the trivialising section (∂x1 ∧

·· ·∧∂xn)
⊗2 ∈ K⊗−2

Cn . Correspondingly, the grading of the vanishing cycles is

induced by restricting the grading of the thimbles to the smooth fibre.

• In low dimensions, which is the case of interest to us, framings of the vanishing

cycles (i.e. fixing a diffeomorphism Sn ∼−→Vi) do not play a role by [Sei08b,

Remark 16.2]

• In the case of n = 2, which will be the case we focus on in this thesis, spin

structures of vanishing cycles correspond to double covers of S1, of which there

are two – one trivial and one non-trivial. The spin structure on the vanishing

cycle must bound a spin structure on the corresponding Lefschetz thimble,

which can have no spin structure which restricts trivially on the boundary.

Therefore, the spin structures on the vanishing cycles in this case must be the

non-trivial ones.

After choosing a distinguished bases, one can associate to a Lefschetz fibration the

Fukaya–Seidel category, which is denoted by FS( f ). Roughly speaking, this is a

12Strictly speaking, a Lefschetz thimble also has a rank one local system; however, the contractabil-
ity of the thimble necessitates its triviality, and so we do not notate it. Since the local system on a
vanishing cycle is induced by restriction, it must also be trivial.
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category which is built from the Lefschetz thimbles with brane structures. As usual,

the derived category

DbFS( f ) = TwFS( f )

will be of most interest to us. Up to equivalence, this is independent of all choices

made in the construction, and so is an invariant of the fibration. We refer to [Sei08b,

Section 18] for a precise definition and detailed discussion. Instead of constructing

this category from first principles, we utilise a theorem of Seidel which significantly

simplifies its computation. An important step in the reformulation of the Fukaya–

Seidel category is [Sei08b, Theorem 18.14], which, amongst other things, shows that

the Lefschetz thimbles associated to a distinguished collection of vanishing paths

forms an exceptional collection, allowing the category to be computed as modules

over an A∞-algebra (an also implying that it is automatically split-closed). Moreover,

by considering the vanishing cycles as exact Lagrangian branes in the distinguished

fibre, where the brane structure is induced by restricting the brane structure on a

thimble to its boundary, the morphisms between thimbles can be computed from the

Floer theory of the vanishing cycles. To remember the order of the distinguished

basis of vanishing paths, one imposes a directedness on these objects.

Following Seidel, we define a directed A∞-category A f such that

1. The objects of A f are the vanishing cycles Vi with the induced brane structure.

A total ordering on the vanishing cycles is imposed by stipulating a starting

point of the cyclic ordering of the corresponding γ̇i(0) (there is no preferred

starting point).



2.2. Preliminaries on invertible polynomials 53

2. The morphisms in the category are:

homA f (Vi,Vj) =


0 if i > j

C · id if i = j

CF•(Vi,Vj) if i < j.

Here, the Floer cochain complex is calculated in the smooth fibre.

Seidel famously showed ([Sei08b, Theorem 18.24]) that there is a quasi-equivalence

of pretriangulated A∞-categories over C

TwA f ' DbFS( f ).

In practice, we will use this as our definition of the Fukaya–Seidel category.

In this thesis, our only source of Lefschetz fibrations will come from the

Morsification of a tame isolated hypersurface singularity which has no other singular

points. To such a Morsification, one can associate its Fukaya–Seidel category as

above, and this is independent of the choice of Morsification. Therefore, we can

speak of the Fukaya–Seidel category of an isolated hypersurface singularity. This

will be one of the categories of central interest in this thesis, and is studied in the

case of invertible polynomials in two variables in Section 3.

2.2 Preliminaries on invertible polynomials
Recall the definition of invertible polynomials from Chapter 1.1. The weights

(d0,d1, . . . ,dn;hw) can be constructed canonically by considering the unique solution

to

A


w1

w2
...

wn

= det(A)


1

1
...

1

 , (2.3)
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and then defining di := wi
dw

and hw := det(A)
dw

, where

dw = gcd(w1, . . . ,wn;det(A)). (2.4)

Note that det(A) = ∏
n
i=1 pi− (−1)n in the loop case, and det(A) = ∏

n
i=1 pi in the

chain and Brieskorn–Pham chases. In particular, we have:

Lemma 2.2.1. Let w be an invertible polynomial associated to a matrix A. Then, we

have

wi =
n

∑
k=1

(−1)k−1
n−1

∏
j=k

pi+ j for loop polynomials,

wi =
n+1−i

∑
k=1

(−1)k−1
n−1

∏
j=k

pi+ j for chain polynomials, and

wi =
n−1

∏
j=1

pi+ j for Brieskorn–Pham polynomials,

where we interpret the empty product as 1 and count the subscripts of i+ j modulo

n.

Proof. It is straightforward to verify that the vector (w1 w2 . . . wn)
T satisfies

(2.3) in each case.

Similarly, the Milnor numbers of invertible polynomials admit simple descrip-

tions:

Lemma 2.2.2. Let w be an invertible polynomial of loop, chain, or Brieskorn–Pham

type. Then

µ(wloop) =
n

∏
i=1

pi,

µ(wchain) =
n+1

∑
i=1

∏
j≥i

(−1) j−1 p j,

µ(wBP) =
n

∏
i=1

(pi−1).

Moreover, w is tame in the sense of [Bro88].
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Proof. By the assumption that each pi ≥ 2, any invertible polynomial has exactly

one critical point, and so the calculation of the Milnor numbers is a dimension count

of C[x1, . . . ,xn]/Jacw in each case. It is straightforward to check that the Milnor

number of wv = w+ v1x1 + · · ·+ vnxn for all v ∈ Cn sufficiently small matches that

of w, and so the tameness of w follows from [Bro88, Proposition 3.1].

Remark 2.2.3. It should be emphasised that the Milnor numbers given in Lemma

2.2.2 are for the polynomials w. In the case of loop and Brieskorn–Pham polynomials,

the Milnor number of w and w̌ will be the same, although this is not in general the

case for chain polynomials.

In general, a Morsification of w̌, given by

w̌ε : Cn→ C,

restricts to a Lefschetz fibration for suitable open subsets of the domain and

codomain; however, combining the fact that our assumption that all pi ≥ 2 im-

plies that each w (and therefore also w̌) has only one isolated critical point with the

fact that invertible polynomials are tame, we can take these open subsets to be the

entire domain and codomain. In this case, we can define the (completion of) the

Milnor fibre as

V̌ := w̌−1(c) (2.5)

for any c ∈ C∗. Similarly, the generic fibre of w̌ε is exact symplectomorphic to V̌

(cf., for example, [Kea15, Lemma 2.18] for a closely related result). In what follows,

we take c = 1.

Recall the definition of the maximal symmetry group (1.2), and define the

corresponding group of characters as

Γ̂w := Zχ1⊕·· ·⊕Zχn+1/{ai1χ1 +ai2χ2 · · ·+ainχn−χn+1}i∈{1,...,n}, (2.6)
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where

χi : Γw→ C∗

(t1, . . . , tn+1) 7→ ti,
(2.7)

and set χn+1 = χw. With this definition, we can view Γw as the group of transforma-

tions of An which keeps w semi-invariant with respect to χw. Moreover, since tn+1

is determined by the other ti, we consider Γw to be a subgroup of (C∗)n; in general,

it is a finite extension of C∗.

Since w is quasi-homogeneous, there is an injective map

ϕ : C∗→ Γw

t 7→ (td1, . . . , tdn).
(2.8)

The group im ϕ ∩ker χw is cyclic of order hw, and is generated by ϕ(e
2π
√
−1

h ) = jw,

which we call the grading element. This fits into a short exact sequence

0→ C∗ ϕ−→ Γw→ ker χw/〈 jw〉 → 0. (2.9)

There is a bijection between subgroups Γ ⊆ Γw of finite index containing ϕ(C∗)

and subgroups Γ ⊆ ker χw which contain the grading element. We call ker χw the

maximal group of diagonal symmetries.

Definition 2.2.4. Let w be an invertible polynomial and ker χw its maximal group of

diagonal symmetries. We call a subgroup Γ⊆ ker χw admissible if 〈 jw〉 ⊆ Γ.

Remark 2.2.5. i) It should be noted that this definition of admissible differs

slightly from that given in [FJR13, Definition 2.3.2]; however, [Kra10, Proposi-

tion 3.4] shows that Definition 2.2.4 implies admissible in the sense of [FJR13].

ii) Since admissible subgroups of ker χw are in bijection with subgroups of Γw

containing the image of ϕ in (2.9), we will also refer to such subgroups as

admissible.
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The definition of jw̌ and ker χw̌ are completely analogous. Given an admissible

subgroup Γ⊆ Γw, we define

χ := χw|Γ. (2.10)

In order to extend the action of any admissible Γ to An+1 = SpecC[x0,x1, . . . ,xn], as

in Conjecture 3, we define the weight of Γ on the x0 variable to be

χ0 = χ−
n

∑
i=1

χi. (2.11)

This is done precisely so that x∨0 ∧ x∨1 ∧·· ·∧ x∨n ' χ as Γ-modules, generalising the

fact that a degree n+1 hypersurface in Pn is Calabi–Yau.

Lemma 2.2.6. Let w be an invertible polynomial. Then

ker χwloop ' µp1 p2...pn−(−1)n

ker χwchain ' µp1 p2...pn

ker χwBP '
n

∏
i=1

µpi.

Proof. In each case, observe that ker χw can be identified with the cokernel of the

map Zn A−→ Zn. In the loop and chain cases, the result follows from computing

the Smith normal form of the matrix, and in the Brieskorn–Pham case the claimed

identification is immediate.
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To provide an explicit description of the action of ker χw on An, consider

A−1 =


ϕ
(1)
1 ϕ

(2)
1 . . . ϕ

(n)
1

ϕ
(1)
2 ϕ

(2)
2 . . . ϕ

(n)
2

...
...

. . .
...

ϕ
(1)
n ϕ

(2)
n . . . ϕ

(n)
n

=
(

ρ1 ρ2 . . . ρn

)

=


ρ̌1

ρ̌2
...

ρ̌n

 ,

where ρk and ρ̌k are the columns and rows of this matrix, respectively. In [Kra10], it

is shown that the group ker χw is generated by the ρi, where

ρk · xi = exp(2π
√
−1ϕ

(k)
i )xi.

To see this, note that g = (g1, . . . ,gn)
T is a diagonal symmetry of w if and only if

A


g1
...

gn

 ∈ Zn.

Therefore, g is a linear combination of the columns of A−1, i.e. the ρi. Moreover, it

is immediate that

jw =
n

∏
i=1

ρi.

Dual to the action of ρi on An, we have that ker χw̌ is generated by the ρ̌k, where

ρ̌k · x̌i = exp(2π
√
−1ϕ

(i)
k )x̌i.

(Note the transpose of the indices of ϕ
(k)
i in this action with respect to the action of
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ρk!) For any admissible subgroup Γ⊆ ker χw, we then define the dual group as

Γ̌ =
{ n

∏
j=1

(ρ̌ j)
r j
∣∣∣ n

∏
j=1

xr j
j ∈

(
C[x1, . . . ,xn]

)Γ
}
. (2.12)

By [ET12, Proposition 3], there is an isomorphism

Hom(ker χw/Γ,C∗)' Γ̌⊆ ker χw̌. (2.13)

Some immediate consequences are:

Lemma 2.2.7. Let Γ⊆ ker χw be an admissible subgroup. Then

i) Γ̌⊆ SLn(C)∩ker χw̌, and

ii) The action of Γ̌ is free away from the divisor {x̌1 . . . x̌n = 0}.

iii) In the case of Γ⊆ ker χw∩SLn(C), we have 〈 jw̌〉 ⊆ Γ̌.

iv) For Γ = Γw, the dual group is trivial.

Proof. To prove part i), observe that, by definition, ǧ = ρ̌
r1
1 . . . ρ̌rn

n ∈ Γ̌ if and only if

xr1
1 . . .xrn

n ∈ (C[x1, . . . ,xn])
Γ. In turn, this is true if and only if

∑
n
i=1 riwi

det(A)
∈ Z,

and so det(ǧ) = e2π
√
−1

∑
n
i=1 riwi
det(A) =1.

Part ii) follows from the definition of Γ̌⊆ ker χw̌. In particular, ker χw̌ is gener-

ated by elements (ť1, . . . , ťn) ∈ (C∗)n such that w̌(ť1x̌1, . . . , ťnx̌n) = w(x̌1, . . . , x̌n), and

so the only element which fixes any point in (C∗)n = Cn \ {x̌1 . . . x̌n} is ťi = 1 for

each i = 1, . . . ,n.

The fact that 〈 jw̌〉 ⊆ Γw̌ in the case that Γ⊆ SLn(C) follows from the fact that

x1 . . .xn is Γ-invariant for any such gamma. Therefore jw̌ = ∏
n
i=1 ρ̌i ∈ Γ̌.
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The proof of statement iv) follows directly from the presentation of Γ̌ in (2.13).

Before moving on, we briefly note here that there are interesting classes of

singularities which fall into the framework of invertible polynomials. For example,

all ADE singularities are invertible, although not necessarily atomic, polynomials.

In fact, Arnol’d’s strange duality can be understood in the context of invertible

polynomials, and demonstrates one of the earliest manifestations of what we now

view as mirror symmetry. In particular, the Hodge-theoretic statement of mirror

symmetry for Arnol’d’s list of 14 exceptional unimodal singularities was established

in [Kra10, Corollary 1.3]. More recently, invertible polynomials have appeared in

the context of compound Du Val (cDV) singularities in [EL21]. Here, the authors

observed that there are families of such singularities which are invertible, allowing

techniques available in this setting to be exploited. This provides motivation and

evidence for a conjecture relating the existence of small resolutions of a singularity

with constraints on the symplectic cohomology of its Milnor fibre.

These applications demonstrate what one hopes is a general phenomenon of invertible

polynomials: they can be used to suggest and provide evidence for more general

patterns and conjectures. Indeed, Chapter 5 can also be viewed in this context, in the

sense that the procedure for gluing the Milnor fibres of invertible curve singularities

in Chapter 4 suggests a more general story of which the Milnor fibres are a special

case, leading to Theorems 4, 5, and 6 .



Chapter 3

Homological Berglund–Hübsch

mirror symmetry for curve

singularities

3.1 Introduction
In this chapter, which presents the results of [HS20], completed in joint work with

Jack Smith, we study Conjecture 1 for the case of invertible polynomials in two

variables with maximal symmetry group, as defined in (1.2). Our main result is:

Theorem 3.1.1. Let w be an invertible polynomial in two variables and Γw its

maximal group of symmetries of w. Then, there is a quasi-equivalence

mf(A2,Γw,w)' DbFS(w̌)

of pre-triangulated A∞ categories over C.

As a by-product of our proof, we also show:

Theorem 3.1.2. For every two variable invertible polynomial, the category

mf(A2,Γw,w) has a tilting object.

3.1.1 Proof outline

In what follows, we restrict attention to n = 2, and use variables x and y rather than

xi, and p and q in place of pi. By the classification of atomic invertible polynomials
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in Section 1.1, we need to deal with the following cases:

• Brieskorn–Pham: w = xp + yq, w̌ = x̌p + y̌q

• chain: w = xpy+ yq, w̌ = x̌p + x̌y̌q

• loop: w = xpy+ xyq, w̌ = x̌py̌+ x̌y̌q.

We treat all three families in a uniform way, and obtain new proofs of the results

of Futaki–Ueda for the two-variable Brieskorn–Pham and type D (chain, q = 2)

singularities. As in Chapter 1 shall always assume that p and q are at least 2. In the

Brieskorn–Pham and chain cases these inequalities are necessary in order for the

origin to be a critical point of both w and w̌, whilst if p or q is 1 in the loop case then

w and w̌ can be reduced to x2 + y2 and x̌2 + y̌2 by a change of variables.

The general strategy of proof is familiar: we match up explicit collections of

generators on the two sides. Concretely, on the A-side, we compute the directed

A∞-category A associated to a basis of vanishing cycles in the Milnor fibre of w̌, as

outlined in Section 2.1.2. In the cases at hand, the Milnor numbers given in Lemma

2.2.2 are

(p−1)(q−1)

in the Brieskorn–Pham case,

pq− p+1 = (p−1)(q−1)+(q−1)+1

in the chain case, and

pq = (p−1)(q−1)+(p−1)+(q−1)+1

in the loop case. The reasons for expressing them in this way will fall out of our

computations.

Meanwhile, on the B-side, we identify a collection of objects in mf(A2,Γw,w)

whose corresponding full subcategory B is quasi-equivalent to A. Since the matrix
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factorisation category is already pretriangulated we obtain a functor

TwB →mf(A2,Γw,w),

and by a generation result (see Lemma 3.2.17 and Remark 3.2.18) this becomes

a quasi-equivalence after taking the idempotent completion. Our calculations will

actually show that the objects in B form a full exceptional collection so by [Sei08b,

Remark 5.14] the categories are in fact already idempotent complete. Putting every-

thing together we obtain a sequence of quasi-equivalences

DbFS(w̌)' TwA' TwB 'mf(A2,Γw,w),

proving Theorem 3.1.1. The sum of the objects in B gives the tilting object of

Theorem 3.1.2.

The choice of generators on the B-side is fairly natural; the main difficulty in

proving Theorem 3.1.1 is to construct a Morsification and basis of vanishing paths

for w̌ such that the categoryA built from the corresponding vanishing cycles matches

up with B. In order to do this systematically, we make a preliminary perturbation

of w̌ by subtracting ε x̌y̌ for small positive real ε . This has Morse critical points

but not, in general, distinct critical values—following a suggestion of Yankı Lekili,

we call this a resonant Morsification. The central fibre is nodal and upon passing

to a nearby regular fibre the nodes are smoothed to thin necks, each supporting a

vanishing cycle as the waist curve. These cycles naturally pair up with the B-side

generators supported along components of w−1(0).

Understanding the remaining vanishing cycles, which are mirror to sheaves

supported at the origin in w−1(0), requires most of the work. There is an obvious

‘real’ vanishing cycle, and by acting by roots of unity on the x̌- and y̌-coordinates

we obtain curves which are almost the other vanishing cycles. The problem is that

they live in different regular fibres, and carrying them to the same fibre requires

explicit analysis of the parallel transport equation on the thin neck regions. The

resulting vanishing paths overlap each other, so we carefully perturb them to reduce
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to a small set of transverse intersections, and then eliminate these intersections by

large deformations of the paths which do not affect the vanishing cycles. Finally we

modify the vanishing cycles by Hamiltonian perturbations to resolve the remaining

ambiguities in their intersection pattern.

3.1.2 Structure of the chapter

We first consider the case of loop polynomials in detail, describing the B-model in

Section 3.2 and the A-model in Section 3.3, culminating in proofs of Theorems 3.1.2

and 3.1.1 (in the loop case) respectively. In Sections 3.4 and 3.5 we describe the

minor modifications needed to deal with chain polynomials, and finally in Section 3.6

we summarise the further modifications needed for Brieskorn–Pham polynomials.

We emphasise that these modifications are essentially just simplifications of the

argument – the general approach is identical and all of the ingredients are contained

in the loop case.

3.2 B-model for loop polynomials

3.2.1 Graded matrix factorisations

Our goal in this section is to understand the category mf(A2,Γw,w = xpy+ xyq) of

equivariant matrix factorisations for the loop polynomial. Recall that here p and q

are assumed to be at least 2. We begin by briefly reviewing the definition, following

[FU13]. As mentioned in Section 1.1, we encode equivariance as respect for the

grading by the abelian group L. In two variables, this is the group freely generated

by elements~x,~y and~c modulo the relations

p~x+~y =~x+q~y =~c,

given in (1.3). Equivalently, L is the quotient of Z2 by the subgroup generated by

(p−1,1−q): the elements~x,~y and~c correspond to (1,0), (0,1) and (p,1) = (1,q)

respectively. Note that the quotient L/Z~c is isomorphic to Zpq−1, generated by~x or

equivalently by~y =−p~x.



3.2. B-model for loop polynomials 65

Let S denote the L-graded algebra C[x,y] in which x has degree ~x and y has

degree~y. The polynomial w = xpy+ xyq is a homogeneous element of degree~c, and

we write R for the quotient S/(w). Given an L-graded R- or S-module M, and an

element l of L, we write M(l) for the module obtained from M by shifting the degree

of each element downwards by l. We shall use subscripts to denote L-graded pieces,

so that M(l)i = Mi+l and S~x = C · x, for example. Note that our notation for R and

S is consistent with Futaki–Ueda [FU13], but opposite to that of Dyckerhoff [Dyc11].

By an L-graded matrix factorisation of w, we mean a sequence

K• = (· · · → Ki ki
−→ Ki+1 ki+1

−−→ Ki+2→ ·· ·)

of L-graded free S-modules of finite rank such that K•[2] is identified with K•(~c) –

i.e. Ki+2 with Ki(~c) and ki+2 with ki(~c) for all i – and such that under these identifica-

tions the composition of any two consecutive maps in the sequence is multiplication

by w. A finitely generated L-graded R-module M gives rise to a matrix factorisation

by taking a free resolution, which eventually stabilises (becomes 2-periodic to the

left, up to shifting the L-grading by~c every two terms), then extending this 2-periodic

part indefinitely to the right, and replacing the free R-modules by the corresponding

free S-modules; see [Dyc11, Sections 2.1 and 2.2]. This is the stabilisation of M.

The set of L-graded matrix factorisations forms a Z-graded dg-category

mf(A2,Γw,w) as follows: homi(K•,H•) comprises sequences ( f • : K• → H•[i])

satisfying f •[2] = f •(~c), the differential

d : homi(K•,H•)→ homi+1(K•,H•)

is given by [Dyc11, Definition 2.1], namely

d f = h◦ f − (−1)i f ◦ k,



66 Chapter 3. Homological B-H mirror symmetry for curve singularities

and composition is component-wise. We shall write Homi for the degree i cohomol-

ogy of hom•.

Finitely generated L-graded R-modules correspond to coherent sheaves on the

stack [w−1(0)/Γw], and this gives a natural equivalence between Db
sing([w

−1(0)/Γw])

and the derived category of singularities of graded R-modules

Db
sing(grR) := Db(grR)/perf(grR),

where perf now refers to complexes of projective modules (Db(grR) is the usual

derived category of finitely-generated L-graded R-modules). The equivalence (1.4)

then becomes an equivalence

HMF(A2,Γw,w)→ Db
sing(grR). (3.1)

Stabilisation of a module gives an inverse to this equivalence, and we will fre-

quently switch between talking about matrix factorisations, modules, and sheaves on

[w−1(0)/Γw].

3.2.2 The basic objects

The stack [w−1(0)/Γw] has three components: the lines x= 0 and y= 0 and the curve

xp−1 + yq−1 = 0. Note that the third component is reducible if gcd(p−1,q−1)>

1. For brevity we will denote xp−1 + yq−1 by w, so that w = xyw. The matrix

factorisations corresponding to the structure sheaves of these components are

Kx
• = (· · · → S(−~c) yw−→ S(−~x) x−→ S→ ···),

Ky
• = (· · · → S(−~c) xw−→ S(−~y) y−→ S→ ···),

and

Kw
• = (· · · → S(−~c) xy−→ S(−~c+~x+~y) w−→ S→ ···)

respectively, obtained by applying the stabilisation procedure of Section 3.2.1 to the

L-graded R-modules R/(x), R/(y) and R/(w). In each case, the third of the three



3.2. B-model for loop polynomials 67

terms written lies in degree 0 within the sequence. We will be particularly interested

in the shifts
iKx = Kx((i+1− p)~x) for i = 1, . . . , p−1

and
jKy = Kx(( j+1−q)~y) for j = 1, . . . ,q−1

of the Kx and Ky objects.

The unique singular point of the stack is the origin, and the other main objects

we will be interested in are L-grading shifts of the structure sheaf of its fatten-

ings. Specifically, for i = 1, . . . , p− 1 and j = 1, . . . ,q− 1 let i, jK0
• be the matrix

factorisation

S(~x+~y) S(~x+( j+1)~y) S(~c+~x+~y)

S(−~c+(i+1)~x+( j+1)~y) S((i+1)~x+~y) S((i+1)~x+( j+1)~y)

y j

−xi

· · ·
⊕

xyq− j

xi⊕ ⊕
· · ·xp−iy

xyq− j

−xp−iy

y j

corresponding to the R-module R((i+1)~x+( j+1)~y)/(xi,y j). This stabilisation

can be computed by starting with the obvious first steps of an R-free resolution

R(~x+( j+1)~y)⊕R((i+1)~x+~y)
(xi y j )
−−−−→ R((i+1)~x+( j+1)~y)

and extending by hand. Shifts of the object R/(x,y) appear in the work of Dyckerhoff

[Dyc11, Section 4.1], who calls it kstab (k is the ground field), and Seidel [Sei11,

Section 11]; here the resolution is described abstractly as a Koszul complex. A

concrete example close to our setting is given by Futaki–Ueda [FU13, Section 4].

Remark 3.2.1. The motivation for considering these objects is Orlov’s result [Orl09,

Theorem 40(ii)], extended to the present setting in [HO18, Theorem B.2], which

gives a semi-orthogonal decomposition

Db
sing(grR) = 〈C,Db(Y )〉,

where Y is the projectivised stack [(w−1(0)\ (000))/Γw] and C is the full subcategory
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generated by a certain collection of grading shifts of the structure sheaf of the origin.

In our case Y is the zero locus of w inside the weighted projective line ProjS, and it

consists of three points: one is smooth and its structure sheaf corresponds to a muta-

tion of Kw (although we do not explicitly compute which, since this decomposition is

purely motivational); the other two are stacky and their structure sheaves, twisted by

characters of their isotropy groups, are given by the iKx and jKy. We replace C by

the related category 〈i, jK0〉 to give the correct pattern of morphisms.

Let B be the full A∞-subcategory of mf(A2,Γw,w) generated by the pq objects

{i, jK0,
iKx[3], jKy[3],Kw[3]}i=1,...,p−1; j=1,...,q−1.

The reason for the shifts is so that all morphisms turn out to have degree 0. In

Sections 3.2.3 to 3.2.7, we compute the morphisms between these objects in the

homotopy category HMF(A2,Γw,w). The reader willing to take these calculations

on trust may skip immediately to Section 3.2.8, where we assemble the results and

deduce that B is quasi-equivalent to a specific quiver algebra with relations and

formal A∞-structure. Then, in Section 3.2.9, we address the issue of generation, and

show that TwB →mf(A2,Γw,w) is a quasi-equivalence. We conclude that the sum

of the objects in B is a tilting object for mf(A2,Γw,w), proving Theorem 3.1.2 for

loop polynomials.

3.2.3 Morphisms between Kx’s, between Ky’s, and from Kw to

itself

We wish to compute morphisms in the homotopy category HMF(A2,Γw,w), and a

priori this involves taking the cohomology of the morphism complexes described

in Section 3.2.1. Thinking of matrix factorisations as stabilisations of R-modules,

this corresponds to computing module Ext’s by (projectively) resolving both the

domain and codomain. One might expect the latter to be unnecessary, and Buchweitz

[Buc86, Section 1.3, Remark (a)] showed that this is indeed the case: given L-graded
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R-modules M and M′ with stabilisations K and K′, we have

Hom•HMF(A2,Γw,w)(K,K′)' H•
(
HomgrR(K⊗S R,M′)

)
.

The Hom on the right-hand side is taken component-wise on the complex K⊗S R.

For any l in L we therefore have

Hom•(Kx,Kx(l))' H•
(
· · · → (R/(x))l

x−→ (R/(x))l+~x
yw−→ (R/(x))l+~c→ ···

)
,

where the first of the three written terms now lives in degree 0 (we have taken

L-graded module homomorphisms from Kx
•⊗S R into R(l)/(x)). This gives

Hom2m(Kx,Kx(l))' (R/(x,yw))m~c+l

for any integer m, whilst Hom2m+1(Kx,Kx(l)) = 0.

One can easily compute a basis of Hom2m by hand in this situation, but, since

we will repeatedly make similar arguments, we record the following general facts

relating gradings and divisibility:

Lemma 3.2.2. Suppose that a and b are integers satisfying a≤ p−1 and b≤ q−1,

and that s is an element of S (or R) which is homogeneous modulo ~c, of degree

a~x+b~y mod~c. Then:

(i) The element s lies in the ideal (xa,yq−1+b)∩ (xp−1+a,yb).

(ii) If a≤ p−2, then s also lies in (xa,yq+b).

(iii) If b≤ q−2, then s also lies in (xp+a,yb).

Proof. Assume a≤ p−1 and b≤ q−1, and let xuyv be a monomial in s, so that

(u−a)~x+(v−b)~y≡ 0 mod~c. (3.2)

We claim first that u≥ a or v≥ q−1+b, so suppose for contradiction that neither
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holds. Then

−(p−1)≤ u−a≤−1 and − (q−1)≤ v−b≤ q−2,

so (u−a)− p(v−b) is non-zero (by reducing modulo p) and lies strictly between

±(pq−1). Substituting~y =−p~x mod~c into (3.2) tells us that (u−a)− p(v−b)≡

0 mod (pq−1), which gives the desired contradiction, and we deduce that u ≥ a

or v ≥ q− 1+ b, and hence that s lies in (xa,yq−1+b). The other arguments are

analogous.

Lemma 3.2.3. Suppose s is an element of degree 0 mod~c. Then the non-constant

terms in s lie in the ideal (xpq−1,xpy,xyq,ypq−1).

Proof. Let xuyv be a non-constant monomial in s. If u = 0 (or v = 0) then one

easily obtains v ≥ pq− 1 (respectively u ≥ pq− 1), so suppose now that u and v

are both positive. We have u− pv≡ 0 mod (pq−1), so if u < p then we must have

u− pv≤−(pq−1) and hence v≥ q.

From these we conclude:

Lemma 3.2.4. In HMF(A2,Γw,w) the objects 1Kx, . . . ,
p−1Kx are exceptional (the

endomorphisms of each are just the scalar multiples of the identity) and pairwise

orthogonal.

Proof. By the above computation, the morphisms from iKx to IKx are given by the

elements of R/(x,yw) of degree (I− i)~x mod~c. If I− i > 0 then Lemma 3.2.2(ii)

tells us that all such elements lie in (x,yq) = (x,yw), and hence vanish in the quotient.

If I− i < 0, then the same argument applies but using Lemma 3.2.2(i) instead, after

rewriting the degree as (p+ I− i)~x+~y mod~c. Finally, if I = i then Lemma 3.2.3

tells us that only constants survive in the quotient.

Likewise. we have:

Lemma 3.2.5. The objects 1Ky, . . .
q−1Ky are exceptional and pairwise orthogonal.
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Similar calculations give

Hom2m(Kw,Kw)' (R/(xy,w))m~c

and Hom2m+1(Kw,Kw) = 0, so by Lemma 3.2.3 we deduce:

Lemma 3.2.6. The object Kw is exceptional.

3.2.4 Morphisms between Kx’s, Ky’s, and Kw

For all l and m we have

Hom2m+1(Kx,Ky(l))' (R/(x,y))m~c+l+~x

whilst Hom2m(Kx,Ky(l)) = 0. This gives:

Lemma 3.2.7. Each iKx is orthogonal to each jKy.

Proof. For morphisms iKx to jKy we need to show that there are no (non-zero)

elements in R/(x,y) of degree (1− i)~x+ j~y mod~c, and this follows from Lemma

3.2.2(i). The argument is similar for morphisms in the opposite direction.

Analogous computations yield

Hom2m+1(Kx(l),Kw)' (R/(x,w))m~c−l+~x

and Hom2m(Kx(l),Kw) = 0 for all l and m. Similarly

Hom2m+1(Kw,Kx(l))' (R/(x,w))(m+1)~c+l−~y

whilst Hom2m(Kw,Kx(l)) = 0.

Likewise

Hom2m+1(Ky(l),Kw)' (R/(y,w))m~c−l+~y,

Hom2m+1(Kw,Ky(l))' (R/(y,w))(m+1)~c+l−~x,

Hom2m(Ky(l),Kw) = Hom2m(Kw,Ky(l)) = 0.
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In particular:

Lemma 3.2.8. For each i and j the objects iKx and jKy are orthogonal to Kw.

Proof. For orthogonality of iKx and Kw we need to check that elements of degree

(p− i)~x or (i+1)~x modulo~c lie in the ideal (x,w) = (x,yq−1). This follows imme-

diately from Lemma 3.2.2(i), except that for (i+1)~x with i = p−1 we must first

rewrite the degree as~x+(q−1)~y mod~c. The argument for jKy is analogous.

Remark 3.2.9. These results match our expectation from Remark 3.2.1 that the

objects iKx and jKy correspond to structure sheaves of disjoint points in the pro-

jective stack Y , twisted by characters of their isotropy groups, and hence should

be exceptional and orthogonal. Moreover, since the object Kw corresponds to a

mutation of the structure sheaf of the smooth point, this should also be orthogonal to

the iKx and jKy.

3.2.5 Morphisms between Kw and K0’s

We now fix (i, j) with 1≤ i≤ p−1 and 1≤ j ≤ q−1, and see that

Hom•(Kw,
i, jK0)' H•

(
· · · → (R/(xi,y j))l

w−→ (R/(xi,y j))l+~c−~x−~y
xy−→ (R/(xi,y j))l+~c→ ···

)
,

where l = (i+1)~x+( j+1)~y. The terms in odd positions in the complex have

degree i~x+ j~y mod~c, so by Lemma 3.2.2(i) they lie in (xi,y j) and therefore vanish.

The same holds in even positions after rewriting the degree (i+1)~x+( j+1)~y mod~c

as (i+1− p)~x+ j~y mod~c.

In the other direction, Hom•(i, jK0,Kw) is the cohomology of the complex

(R/(w))−~c−~x−~y (R/(w))−~x−( j+1)~y (R/(w))−~x−~y

(R/(w))−(i+1)~x−( j+1)~y (R/(w))−(i+1)~x−~y (R/(w))~c−(i+1)~x−( j+1)~y

xyq− j

−xp−iy

· · ·
⊕

y j

xp−iy⊕ ⊕
· · ·xi

y j

−xi

xyq− j

For each m, Hom2m(i, jK0,Kw) is therefore given by

Ker

 xyq− j xi

−xp−iy y j

 modulo Im

 y j −xi

xp−iy xyq− j


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in (R/(w))(m−1)~c−~x−~y⊕ (R/(w))m~c−l . Ignoring gradings for a second, this kernel is

spanned by those f , g in R such that there exist h, k in R with

xyq− j f + xig = (xp−1 + yq−1)h and − xp−iy f + y jg = (xp−1 + yq−1)k.

Subtracting xi times the latter from y j times the former we see that h = xh′ and

k = yk′ for some polynomials h′ and k′, and that f = y j−1h′− xi−1k′. Plugging this

back in gives g = xp−ih′+ yq− jk′, so Hom2m(i, jK0,Kw) is parametrised by

y j−1 −xi−1

xp−i yq− j

h′

k′

 modulo Im

 y j −xi

xp−iy xyq− j

 (and modulo w),

with h′ ∈ R(m−2)~c+(q− j)~y and k′ ∈ R(m−2)~c+(p−i)~x. It is clear from this description

that h′ and k′ only matter modulo (y,w) = (y,xp−1) and (x,w) = (x,yq−1), but h′ and

k′ must lie in these ideals by Lemma 3.2.2(i), so we conclude that Hom2m(i, jK0,Kw)

vanishes.

Similarly, Hom2m+1(i, jK0,Kw) is parametrised by

 yq− j−1 xi

−xp−i−1 y j

h′

k′

 modulo Im

 xyq− j xi

−xp−iy y j

 (and w),

with h′ ∈ Rm~c−~x−( j+1)~y and k′ ∈ Rm~c−(i+1)~x−~y. Since k′ can be eliminated and we’re

left with

Hom2m+1(i, jK0,Kw)' (R/(xy,w))(m−1)~c

 yq− j−1

−xp−i−1

 ,

and by Lemma 3.2.3 (R/(xy,w))(m−1)~c has only constants. The upshot is:

Lemma 3.2.10. In HMF(A2,Γw,w) the only morphisms between Kw and i, jK0 are

from the latter to the former, spanned by (yq− j−1,−xp−i−1) in degree 3 in the above

complex.
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3.2.6 Morphisms between Kx’s and Ky’s and K0’s

For each I we have that Hom•(IKx,
i, jK0) vanishes since again the whole complex is

zero by Lemma 3.2.2(i). Morphisms the other way are computed by the complex

(R/(x))−2~c+I~x (R/(x))−~c+I~x− j~y (R/(x))−~c+I~x

(R/(x))−~c+(I−i)~x− j~y (R/(x))−~c+(I−i)~x (R/(x))(I−i)~x− j~y

xyq− j

−xp−iy

· · ·
⊕

y j

xp−iy⊕ ⊕
· · ·xi

y j

−xi

xyq− j

All differentials vanish except y j, which is injective, so we get

Hom2m(i, jK0,
IKx)' (R/(x,y j))(m−2)~c+I~x,

Hom2m+1(i, jK0,
IKx)' (R/(x,y j))(m−1)~c+(I−i)~x.

The former is zero by Lemma 3.2.2(i), whilst the latter is zero unless I = i, when it

contains only constants, by the argument used in the proof of Lemma 3.2.4. From

this we get:

Lemma 3.2.11. In HMF(A2,Γw,w) there are no morphisms from IKx to i, jK0. There

are no morphisms in the other direction unless I = i, in which case the morphism

space is spanned by (0,1) in degree 3 in the above complex. Similarly for morphisms

between JKy and i, jK0.

3.2.7 Morphisms between K0’s

The complex computing Hom•(i, jK0,
I,JK0) is

(R/(xI,yJ))−~c+I~x+J~y (R/(xI,yJ))I~x+(J− j)~y (R/(xI,yJ))I~x+J~y

(R/(xI,yJ))(I−i)~x+(J− j)~y (R/(xI,yJ))(I−i)~x+J~y (R/(xI,yJ))~c+(I−i)~x+(J− j)~y

xyq− j

−xp−iy

· · ·
⊕

y j

xp−iy⊕ ⊕
· · ·xi

y j

−xi

xyq− j
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By Lemma 3.2.2(i) all of the terms vanish except the bottom term in the even

positions, giving

Hom2m(i, jK0,
I,JK0)' (R/(xI,yJ))(I−i)~x+(J− j)~y,

Hom2m+1(i, jK0,
I,JK0) = 0.

If I < i then we can rewrite (I− i)~x+(J− j)~y as (p+ I− i)~x+(J− j+1)~y modulo

~c and apply Lemma 3.2.2(i) to see that Hom2m vanishes. Likewise if J < j.

Now assume that I ≥ i and J ≥ j. By Lemma 3.2.2(i), any element of degree

(I− i)~x+(J− j)~y mod~c is divisible by xI−iyJ− j modulo (xI,yJ). So we can rewrite

Hom2m as

(R/(xi,y j))0 · xI−iyJ− j,

and by Lemma 3.2.3 the only surviving term is C · xI−iyJ− j. We deduce:

Lemma 3.2.12. For all (i, j) and (I,J) we have that

Hom•(i, jK0,
I,JK0)'

C · xI−iyJ− j if I ≥ i, J ≥ j and •= 0

0 otherwise.

3.2.8 The total endomorphism algebra of the basic objects

Combining the results of Sections 3.2.3 to 3.2.7, we see that, in HMF(A2,Γw,w),

the basic objects iKx, jKy, Kw and i, jK0 are all exceptional, and that the morphisms

between distinct objects are spanned by:

• (0,1) in degree 3 from each i, jK0 to iKx

• (0,1) in degree 3 from each i, jK0 to jKy

• (yq− j−1,−xp−i−1) in degree 3 from each i, jK0 to Kw

• xI−iyJ− j in degree 0 from i, jK0 to I,JK0 whenever I ≥ i and J ≥ j.

We immediately see that morphisms between the i, jK0 compose in the obvious way

so that their total endomorphism algebra is the tensor product Ap−1⊗Aq−1 of the
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path algebras of the Ap−1- and Aq−1-quivers (this is the path algebra of the obvious

product quiver subject to the relations which say that the squares commute). In fact,

we have:

Theorem 3.2.13. The cohomology-level total endomorphism algebra of the objects
iKx[3], jKy[3], Kw[3] and i, jK0 in B is the path algebra of the quiver-with-relations

described in Figure 3.1, with all arrows living in degree zero. In particular, B is a

Z-graded A∞-algebra concentrated in degree 0, so is intrinsically formal.

· · ·

· · ·

· · ·

· · ·

...
...

...
...

.... .
.

i, jK0

iKx[3]

jKy[3]

Kw[3]

Relations:

(i) Squares commute

(ii) Dashed composi-
tions vanish

Figure 3.1: The quiver describing the category B for loop polynomials.

Proof. To prove the cohomology statement we just need to check that the morphisms

compose correctly, namely, that for I ≥ i and J ≥ j, the compositions

Hom3(I,JK0,Kw)⊗Hom0(i, jK0,
I,JK0)→ Hom3(i, jK0,Kw),

Hom3(i,JK0,
iKx)⊗Hom0(i, jK0,

i,JK0)→ Hom3(i, jK0,
iKx),

Hom3(I, jK0,
jKy)⊗Hom0(i, jK0,

I, jK0)→ Hom3(i, jK0,
jKy)

send generators to generators. This is immediate from the explicit descriptions of

the morphisms above after noting that the generator

R((i+1)~x+( j+1)~y)/(xi,y j)
xI−iyJ− j

−−−−→ R((I +1)~x+(J+1)~y)/(xI,yJ)
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of Hom0(i, jK0,
I,JK0) induces the maps

1 0

0 xI−iyJ− j

 in even degree and

yJ− j 0

0 xI−i

 in odd degree

between the matrix factorisations (the degree 3 matrix is the only one we actually

need).

The final claim, about the A∞-structure, follows from the fact that a directed

algebra concentrated in degree zero is formal – there is no room for non-trivial higher

A∞-operations.

Remark 3.2.14. This is an example of a collection which was subsequently con-

structed by Kravets ([Kra19]). The extension to three variables is also a direct

computation.

3.2.9 Generation

We have now computed the quasi-isomorphism type of the full A∞-subcategory B ⊂

mf(A2,Γw,w) on the basic objects iKx,
jKy,Kw,

i, jK0. The goal of this subsection is

to prove:

Proposition 3.2.15. The functor

Π(TwB)→Π(mf(A2,Γw,w))

is a quasi-equivalence, where Π denotes A∞- (or dg-) idempotent completion.

Remark 3.2.16. As mentioned in Section 3.1.1, the Π’s can be removed from this

statement (and this is what we need to prove Theorem 3.1.1) using the fact that the

objects in B form a full exceptional collection in TwB, so that the category is already

idempotent complete by [Sei08b, Remark 5.14].

For a triangulated category C and a collection V of objects in C, let 〈V 〉 denote

the smallest full triangulated subcategory of C which contains the objects in V and

is closed under isomorphism, and let superscript π denote idempotent completion.
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We’ll say that V split-generates C if the functor 〈V 〉π →Cπ induced by the obvious

inclusion of 〈V 〉 in C is an equivalence.

The content of Proposition 3.2.15 is that the set

V = {iKx,
jKy,Kw,

i, jK0}

split-generates C = HMF(A2,Γw,w). The key to establishing this is the following

application of a result of Polishchuk–Vaintrob:

Lemma 3.2.17 ([PV16, Proposition 2.3.1]). The category HMF(A2,Γw,w) is split-

generated by the L-grading shifts of the stabilisation of the module R/(x,y).

Remark 3.2.18. The cited result is a simple modification of the non-equivariant case,

previously obtained by several authors including Schoutens [Sch03], Dyckerhoff

[Dyc11, Corollary 5.3], Seidel [Sei11, Lemma 12.1] (building on work of Orlov

[Orl11]), and Murfet [KMVdB11, Proposition A.2].

Proof of Proposition 3.2.15. By Lemma 3.2.17 it suffices to show that under the

equivalence (3.1) the category 〈V 〉 contains all of the L-grading shifts of R/(x,y). In

other words, it is enough to prove that for all l in L the L-graded R-module R(l)/(x,y)

can be built from the objects

R((i+1− p)~x)/(x), R(( j+1−q)~y)/(y), R/(w), and R((i+1)~x+( j+1)~y)/(xi,y j)

with 1≤ i≤ p−1 and 1≤ j ≤ q−1, by taking cones and shifts (in the triangulated

category sense, rather than in the L-grading). Since [2] is equivalent to (~c), we

actually only need consider l in a set of representatives of L/Z~c.

For any 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ q− 1 we have a morphism (of L-graded

R-modules)

R(i~x+ j~y)/(xi−1,y j−1)
x−→ R((i+1)~x+ j~y)/(xi,y j−1) (3.3)

whose cone – which is just the cokernel in this case – is the module R((i+ 1)~x+

j~y)/(x,y j−1). Both objects in (3.3) lie in V unless i or j is 1, in which case the
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offending objects are zero, so we conclude that this cone lies in 〈V 〉. Similarly

R((i+1)~x+( j+1)~y)/(x,y j) is in 〈V 〉, and hence

R((i+1)~x+( j+1)~y)/(x,y)' Cone
(
R((i+1)~x+ j~y)/(x,y j−1)

y−→ R((i+1)~x+( j+1)~y)/(x,y j)
)

is also in 〈V 〉. This gives (p−1)(q−1) of the pq−1 objects we need.

Next consider the extension

0→ R((i+1)~x+~y)/(x)
y j

−→ R((i+1)~x+( j+1)~y)/(x)→ R((i+1)~x+( j+1)~y)/(x,y j)→ 0.

The outer terms are in 〈V 〉 (the first is iKx[2] and the last is built from R(a~x+b~y)/(x,y)

for a = i+1 and b = 2,3, . . . , j+1 by taking cones), so the middle term is in 〈V 〉.

In particular, taking j = q−1 we see that

R(i~x)/(x) = R((i+1)~x+q~y)[−2]/(x)

lies in 〈V 〉. If i is at least 2 then R(i~x+~y)/(x) = i−1Kx[2] is also in 〈V 〉, and hence

so is

R(i~x+~y)/(x,y)' Cone
(
R(i~x)/(x)

y−→ R(i~x+~y)/(x)
)
.

One can make a similar argument with the roles of x and y interchanged to construct

R(~x+ j~y)/(x,y) when 2≤ j ≤ p−1.

So far we have thus seen that R(a~x+b~y)/(x,y) lies in 〈V 〉 for 1 ≤ a ≤ p and

1 ≤ b ≤ q, except for the cases (a,b) = (1,1), (1,q) and (p,1). If we can fill in

these missing three cases (the latter two are in fact equivalent – both correspond to

R(~c)/(x,y)) then we will have constructed shifts of R/(x,y) by representatives of

each class in L/Z~c, and will therefore be done.

To build R(~x+~y)/(x,y) note that it is the cokernel of

R(~x)/(x)⊕R(~y)/(y)
(y x)−−−→ R(~x+~y)/(xy).

The two summands in the domain were constructed above, whilst the codomain is
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Kw[1]. Finally, to get R(~c)/(x,y) observe that R/(x,y) is the cokernel of

R(−~y)/(x,ypq−2)
y−→ R/(x,ypq−1). (3.4)

The domain can be built from R(−b~y)/(x,y) for b = 1, . . . , pq−2 by taking cones,

and these objects are all (up to repeated applications of [±2]) ones that we have

already constructed. The codomain, meanwhile, is given by

Cone
(
R(−(p−1)~c)/(x)

ypq−1

−−−→ R/(x)
)
,

and the two terms inside the cone are p−1Kx[−2(p−1)] and p−1Kx. This means that

both objects in (3.4) lie in 〈V 〉, and hence so does the cokernel R/(x,y). Shifting by

[2] gives the object R(~c)/(x,y) that we need.

Remark 3.2.19. We proved that B generates mf(A2,Γw,w) by showing that it gener-

ates the objects R(l)/(x,y), which split-generate the category, and then invoking the

fact that TwB is idempotent complete. The R(l)/(x,y) themselves cannot possibly

generate (as opposed to split-generate), for the following reason: mf(A2,Γw,w) has

a full exceptional collection of size pq, so its Grothendieck group is free of rank pq,

whereas the span of the R(l)/(x,y) has rank at most |L/Z~c|= pq−1.

As a corollary of Proposition 3.2.15, we obtain:

Theorem 3.2.20 (Theorem 3.1.1, loop polynomial case). The object

E :=
( ⊕

i=1,...,p−1
j=1,...,q−1

i, jK0

)
⊕
( p−1⊕

i=1

iKx[3]
)
⊕
( q−1⊕

j=1

jKy[3]
)
⊕Kw[3]

is a tilting object for mf(A2,Γw,w).

Proof. We need to show that Endi(E) = 0 for all i 6= 0 and that hom•(E ,X) ' 0

implies X ' 0. The first statement follows immediately from Theorem 3.2.13, whilst

the second is a consequence of Proposition 3.2.15: if hom•(E ,X)' 0 then there are

no non-zero morphisms from 〈V 〉π to X in HMF(A2,Γw,w), which forces X to be

quasi-isomorphic to 0.
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Remark 3.2.21. As mentioned in the introduction, the existence of this tilting object

defines an equivalence

mf(A2,Γw,w)' Db(end(E)op).

This forms basis of our strategy for proving homological mirror symmetry. In

particular, the proof follows by showing that the tilting object which is known to exist

on the A–side precisely matches E .

3.3 A-model for loop polynomials

3.3.1 A resonant Morsification

We are now interested in the polynomial w̌ = x̌py̌+ x̌y̌q as a map C2 → C. To

construct the category A we should Morsify w̌ by adding a small perturbation, fix

a regular value ∗, then pick a distinguished basis of vanishing paths (γ1, . . . ,γN) in

the base C, where γi is a smooth embedded path from ∗ the ith critical value. We

require that the γi are pairwise disjoint except for their common initial point γi(0) = ∗,

that the vectors γ̇i(0) in T∗C are non-zero and distinct, and that the corresponding

directions are in clockwise order as i increases from 1 to N (we are free to choose the

starting direction for this clockwise ordering). We then consider the corresponding

vanishing cycles in the fibre Σ over ∗ (strictly we should take Σ to be the Liouville

completion of the Milnor fibre, but this is equivalent in our case), and define A to be

the directed A∞-category on these cycles whose morphisms and compositions in the

allowed direction are given by those in the compact Fukaya category F(Σ). Note

that we are free to modify the vanishing cycles by Hamiltonian isotopy in order to

compute A up to quasi-equivalence.

In order to implement this, we first consider the perturbation

w̌ε := w̌− ε x̌y̌ = x̌y̌(x̌p−1 + y̌q−1− ε)

of w̌, where ε is a small positive real number; in analogy with Section 3.2 we shall

denote x̌p−1 + y̌q−1 by w̌. We call this a resonant Morsification, since its critical
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points are Morse but the critical values are not all distinct. In fact, the critical points

fall into four types:

(i) x̌p−1 = ε , y̌ = 0

(ii) x̌ = 0, y̌q−1 = ε

(iii) x̌ = y̌ = 0

(iv) (x̌p−1, y̌q−1) = ε

pq−1(q−1, p−1).

The critical points of the types (i)–(iii) all lie over the critical value zero, whilst for

type (iv) the critical value is −x̌y̌ε(p−1)(q−1)/(pq−1) so is non-zero and lies on

the ray through −x̌y̌.

We denote the unique positive real critical point of type (iv) by (x̌+crit, y̌
+
crit), with

corresponding critical value ccrit (this is negative real). Letting ζ and η denote the

roots of unity

ζ = e2π
√
−1/(p−1) and η = e2π

√
−1/(q−1),

the full set of type (iv) critical points is then given by

{(ζ l x̌+crit,η
my̌+crit) : 0≤ l ≤ p−2, 0≤ m≤ q−2}.

The critical value corresponding to (ζ l x̌+crit,η
my̌+crit) is ζ lηmccrit, so there are gcd(p−

1,q−1) critical points in each of these critical fibres.

We now fix our regular fibre Σ to be w̌−1
ε (−δ ), where δ is a positive real number

much less than ε (in other words, we take ∗=−δ ). The condition δ � ε is to allow

us to understand Σ as a smoothing of w̌−1
ε (0). For the critical points of types (i)–(iii)

we choose the vanishing path given by the straight line segment from −δ to 0. For

the critical point (ζ l x̌+crit,η
my̌+crit), meanwhile, we define the preliminary vanishing

path γl,m by following the circular arc −δe
√
−1θ as θ increases from 0 to

θl,m := 2π

(
l

p−1
+

m
q−1

)
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and then following the radial straight line segment from −ζ lηmδ to ζ lηmccrit. As

the name suggests, we will later modify these preliminary vanishing paths (they

currently do not form a distinguished basis since they intersect and overlap each

other), but they serve an important intermediate role.

Figure 3.2 shows the critical values of w̌ε , the vanishing path for the type

(i)–(iii) critical points, and the preliminary vanishing paths for (l,m) = (0,0), (1,0)

and (1,2), all in the case (p,q) = (4,6). We have slightly separated the arcs for

clarity – really they both have radius δ . Note that θl,m may be greater than 2π , in

γ1,2

γ1,0

γ0,0

−δ 0

Figure 3.2: The critical values of w̌ε (crosses), the vanishing path for critical value 0, and
three of the preliminary vanishing paths, when (p,q) = (4,6).

which case γl,m covers more than a full circle, but these paths are difficult to indicate

on a diagram. Note also that different values of (l,m) may give rise to different

preliminary vanishing paths, even if the critical values are the same.

3.3.2 The zero-fibre and its smoothing Σ

The fibre of w̌ε over zero has three components: the lines {x̌ = 0} and {y̌ = 0}, and

the smooth curve {w̌ = ε}. Schematically the picture is as in Figure 3.3. The crosses

denote transverse intersections between the components, and the dotted line where

the planes appear to meet is to indicate that they are actually disjoint in C2 except

for the intersection at the origin. In Σ, each of the nodes is smoothed to a thin neck

whose waist curve is the corresponding vanishing cycle. We denote these vanishing

cycles by lVy̌w̌, mVx̌w̌ and Vx̌y̌ for l = 0, . . . , p−2 and m = 0, . . . ,q−2, corresponding



84 Chapter 3. Homological B-H mirror symmetry for curve singularities

x̌ = 0
y̌ = 0

w̌ = ε

p−1

q−1

Figure 3.3: The fibre w̌−1
ε (0) for loop polynomials.

to critical points (ζ lε1/(p−1),0), (0,ηmε1/(q−1)) and (0,0) respectively.

Remark 3.3.1. We can compute the genus and number of punctures of Σ as follows.

The punctures correspond to boundary components at infinity, where the defining

equation looks like x̌py̌+ x̌y̌q = 0. The lines {x̌ = 0} and {y̌ = 0} each give rise to a

boundary component, whilst {x̌p−1 + y̌q−1 = 0} gives gcd(p−1,q−1) components.

We deduce

# punctures of Σ = gcd(p−1,q−1)+2.

The pq vanishing cycles form a basis for H1(Σ), whose rank is

2g(Σ)+# punctures−1,

so we obtain

g(Σ) =
1
2
(pq−gcd(p−1,q−1)−1) .

If δ is chosen sufficiently small then the monodromy of parallel transport around

the circle of radius δ is supported in small neighbourhoods of these p+q−1 curves,

and is simply the product of the Dehn twists in them. It is not strictly true that

the monodromy is supported in these neighbourhoods, but as explained in [Sei97,

Section 19] it can be made so by a small deformation of the fibration, which does
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not affect the categories and which we will not explicitly notate. After deleting these

neighbourhoods (and corresponding neighbourhoods in the other fibres) we may

therefore trivialise the fibration w̌ε over the disc of radius δ , and identify each fibre

with the curve Σ′ obtained from w̌−1
ε (0) by removing neighbourhoods of the critical

points marked in Figure 3.3. Equivalently, we may think of Σ′ as being obtained

from Σ by removing the neck regions. Concretely, it consists of: a complex line (the

x̌-axis) with small balls around the origin and the (p− 1)th roots of ε removed; a

complex line (the y̌-axis) with small balls around the origin and the (q−1)th roots of

ε removed; and a (p−1)(q−1)-fold cover of the line {u+ v = ε} with small balls

about (ε,0) and (0,ε) removed, with the covering map given by (u,v) = (x̌p−1, y̌q−1).

All of the interesting parallel transport occurs in the neck regions which we have

deleted, and is described by ‘partial Dehn twists’ which we explicitly describe later

in a local model.

3.3.3 The preliminary vanishing cycles

Let l,mV pr
0 denote the preliminary vanishing cycle in Σ corresponding to the critical

point (ζ l x̌+crit,η
my̌+crit) and the preliminary vanishing path γl,m. The goal of this

subsection is to describe these cycles by a combination of symmetry considerations

and parallel transport computations.

Since w̌ε has real coefficients, we can temporarily view it as a function R2→R.

This function has a local minimum at (x̌+crit, y̌
+
crit), where it attains the value ccrit < 0.

There are no critical values in the interval (ccrit,0), so the level sets w̌−1
ε (c) for c

in this range have a component which is a smooth loop encircling (x̌+crit, y̌
+
crit), and

which shrinks down to this point as c↘ ccrit. As c↗ 0 this loop, which we’ll denote

by Λc, converges to the boundary of the region in the upper right quadrant of R2 that

is bounded on the left by x̌ = 0, below by y̌ = 0, and above and to the right by w̌ = ε .

We’ll denote this piecewise smooth limiting loop by Λ0.

Now return from this purely real discussion to the full complex picture. Sym-

plectic parallel transport between the fibres of w̌ε over a path c(t) is described by
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the ODE  ˙̌x

˙̌y

=
ċ

|dw̌ε |2

∂x̌w̌ε

∂y̌w̌ε

 . (3.5)

This obviously preserves the real part of the fibre when c moves along the real axis,

as it did in the previous paragraph, so we see that the loops Λc are carried to one

another by parallel transport. In particular, Λ−δ is exactly the preliminary vanishing

cycle 0,0V pr
0 .

Just as we viewed Σ as a smoothing of w̌−1
ε (0), we shall understand 0,0V pr

0 =

Λ−δ as a smoothing of Λ0. In Σ′ it comprises: the real line segment joining the

deleted ball about 0 to the deleted ball about ε1/(p−1) in the x̌-axis; the real line

segment joining the deleted ball about 0 to the deleted ball about ε1/(q−1) in the

y̌-axis; the positive real lift of the line segment joining the deleted balls about (ε,0)

and (0,ε) in {u+ v = ε}, under the covering map (x̌, y̌) 7→ (u,v) described above. It

enters three of the neck regions, namely those corresponding to 0Vy̌w̌, 0Vx̌w̌ and Vx̌y̌,

in each of which it is given by the positive real locus in (x̌, y̌)-coordinates. This is

indicated in Figure 3.4, where the deleted balls are indicated by the grey blobs and

the three segments of 0,0V pr
0 are respectively the the horizontal dash-dotted line, the

vertical dotted line, and the dotted diagonal arc.

0,0V pr
0 0,1V pr

0

2,2V pr
0

Figure 3.4: Schematic picture of some preliminary vanishing cycles in Σ′ for loop polyno-
mials.
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To compute the other l,mV pr
0 , we decompose the path γl,m into its radial segment

and its circular arc. The map

fl,m : (x̌, y̌) 7→ (ζ l x̌,ηmy̌)

gives a symplectomorphism of C2 which w̌ε intertwines with multiplication by ζ lηm

on C, so the curve fl,m(
0,0V pr

0 ) is the vanishing cycle in the fibre over −ζ lηmδ that

corresponds to the critical point (ζ l x̌+crit,η
my̌+crit) and the vanishing path given by

the radial segment of γl,m. This means that l,mV pr
0 is obtained from fl,m(

0,0V pr
0 ) by

parallel transporting around the circular arc of γl,m.

We can therefore immediately describe the part of l,mV pr
0 lying in Σ′, since it

is obtained from the corresponding part of 0,0V pr
0 by applying fl,m. In full detail, it

comprises: the radial line segment joining the deleted ball about 0 to the deleted ball

about ζ lε1/(p−1) in the x̌-axis; the real line segment joining the deleted ball about

0 to the deleted ball about ηmε1/(q−1) in the y̌-axis; the lift to ζ lR+×ηmR+ ⊂ C2

of the line segment joining the deleted balls about (ε,0) and (0,ε) in {u+ v = ε},

under the covering map (x̌, y̌) 7→ (u,v). This is shown in Figure 3.4, where 2,2V pr
0 is

drawn in solid black and 0,1V pr
0 is drawn dashed (the segment along which it overlaps

with 0,0V pr
0 is shown dash-dotted). The segments lying in the two coordinate axes

should all really be straight, with the grey blobs lying on a circle about the origin,

but we have deformed the picture in order to draw it in two dimensions.

To see what l,mV pr
0 looks like in the three neck regions it meets, namely those

corresponding to lVy̌w̌, mVx̌w̌ and Vx̌y̌, we simply have to take the (ζ lR+×ηmR+)-

locus in each of these necks over −ζ lηmδ and parallel transport clockwise through

angle θl,m around the circle of radius δ ; this is our next task. Near the critical

point (0,0), where x̌ and y̌ are both small, we may approximate w̌ε by −ε x̌y̌. This

corresponds to the Vx̌y̌-neck region in Σ, and in this approximation the parallel

transport equation (3.5) simplifies to ˙̌x

˙̌y

=
−ċ

ε(|x̌|2 + |y̌|2)

y̌

x̌

 . (3.6)



88 Chapter 3. Homological B-H mirror symmetry for curve singularities

We may also approximate the (ζ lR+×ηmR+)-locus in the Vx̌y̌-neck over −ζ lηmδ

by the hyperbola

(x̌, y̌) =
√

δ/ε(ζ les,ηme−s)

parametrised by a small real variable s. We want to parallel transport over the path

c(t) = −δe
√
−1t as t decreases from θl,m to 0, and we postulate a solution of the

form (x̌, y̌) =
√

δ/ε(es+
√
−1ϕ ,e−s+

√
−1(t−ϕ)) where ϕ is a real function of s and t.

Plugging this into (3.6) we obtain ϕ̇ x̌

(1− ϕ̇)y̌

=
x̌y̌

|x̌|2 + |y̌|2

y̌

x̌

 ,

so after imposing the initial condition ϕ(s,θl,m) = 2πl/(p−1) we get the unique

solution

ϕ =
2πl

p−1
+

e−2s(t−θl,m)

e2s + e−2s . (3.7)

In particular, the value of ϕ at the end of the parallel transport (t = 0), which we

denote by ϕl,m, is given by

ϕl,m(s) := ϕ(s,0) =
2π

e2s + e−2s

(
e2sl
p−1

− e−2sm
q−1

)
. (3.8)

This is supposed to describe the argument of the x̌-component of l,mV pr
0 (or minus

the argument of the y̌-component) on the Vx̌y̌-neck region of Σ, and note that it is

consistent with the description we already have on Σ′: when s becomes large this

neck joins the x̌-axis, where we know that the x̌-component of l,mV pr
0 has argument

2πl/(p−1); when s becomes small the neck joins the y̌-axis, where we know that

y̌-component of l,mV pr
0 has argument 2πm/(q−1).

We can run analogous arguments on the other two necks that l,mV pr
0 passes

through. To combine this information into a visualisable format, note that we can

coordinatise the union of the x̌-axis part of Σ′ and the Vx̌y̌- and lVy̌w̌-necks by x̌.

The x̌-projection of this region consists of the complex plane with a puncture at 0,

a puncture at ζ l x̌+crit, and small balls about all other ζ jx̌+crit removed. Small balls
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around the two punctures represent the two necks. Strictly speaking, the punctures

are extremely tiny deleted balls, but we will not make this distinction.

Away from the two neck regions in this picture, we are simply on the x̌-axis

part of Σ′, so l,mV pr
0 is given by the radial segment connecting them. On the Vx̌y̌-

neck, near the puncture at 0, the computation above shows that as we approach the

puncture the argument of x̌ interpolates from 2πl/(p− 1) to −2πm/(q− 1). We

can do the same on the lVy̌w̌ neck, near the puncture at ζ l x̌+crit, but now the local

coordinate is x̌′ where x̌ = ζ l x̌+crit− x̌′, and this time it is the argument of x̌′ which

interpolates from 2πl/(p−1) to −2πm/(q−1) as we approach the puncture. The

cases (l,m) = (1,0) and (l,m) = (1,1) with (p,q) = (4,3) are shown in Figure 3.5.

We have drawn separate diagrams for the two choices of (l,m) since the cycles

overlap along their central segment and so would be difficult to distinguish if drawn

on top of each other. The dashed circles represent the boundaries of the deleted

Figure 3.5: The x̌-projection of the preliminary vanishing cycles 1,0V pr
0 (left) and 1,1V pr

0
(right) in the x̌-axis part of Σ′ and the Vx̌y̌- and lVy̌w̌-necks, with (p,q) = (4,3).

balls, the dotted circles represent the boundaries of the neck regions, and the blobs

represent the punctures. The feint solid circles are the waist curves Vx̌y̌ and lVy̌w̌.

There is a corresponding picture for the y̌-projection of the y̌-axis part of Σ′

and the Vx̌y̌- and mVx̌w̌- necks. The picture on {w̌ = ε} part of Σ′ is essentially

uninteresting since the l,mV pr
0 are pairwise disjoint there. This is because, on that part,

the different l,mV pr
0 are different lifts of the same segment in {u+v = ε}. Combining

the pictures on these three parts of Σ gives a complete description of all of the
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preliminary vanishing cycles.

Remark 3.3.2. There are some obvious points to note here, which are clear parallels

of the structure of the generating set on the B-side. First, the vanishing cycles Vx̌y̌,
lVy̌w̌ and mVx̌w̌ are all pairwise disjoint. Second, each l,mV pr

0 intersects Vx̌y̌ exactly

once, transversely. Third, l,mV pr
0 and LVy̌w̌ intersect once, transversely, if l = L and

are disjoint otherwise (similarly for MVx̌w̌). And finally, if l 6= L and m 6= M then
l,mV pr

0 and L,MV pr
0 are disjoint except on the Vx̌y̌-neck region, where (3.8) tells us that

they intersect once, transversely, if l > L and m > M or vice versa, and are disjoint

otherwise (as |x̌| increases, the difference in their x̌-arguments varies monotonically

from 2π(m−M)/(q−1) to 2π(L− l)/(p−1)).

3.3.4 Modifying the vanishing paths

As already noted, the preliminary vanishing paths (plus the vanishing paths connect-

ing −δ to zero) do not form a distinguished basis of vanishing paths because they

intersect and overlap each other. In this subsection, we describe how to remedy this,

which also involves perturbing w̌ to separate the critical values in such a way that

the vanishing cycles are basically unaffected.

By plotting modulus and argument+π , we may view the preliminary paths

γl,m as right-angled paths in R2 from (δ ,0) to (δ ,θl,m) to (−ccrit,θl,m). We define

modified paths γ ′l,m using this picture to be the piecewise linear paths as follows:

• From (δ ,0) to (δ + δ ′,θl,m) to (−ccrit,θl,m) for some small positive δ ′, if

θl,m < 2π .

• From (δ ,0) to (δ +δ ′,2π +λ (θl,m−4π)) to (δ +2δ ′,2π +λ (θl,m−4π)) to

(δ +3δ ′,θl,m−θ ′)) to (−ccrit,θl,m−θ ′) for some small positive λ and θ ′, if

θl,m ≥ 2π .

In the second case, we have moved the end-point of the path so we correspondingly

perturb the fibration so that the critical point (ζ l x̌+crit,η
my̌+crit) has its critical value

ζ lηmccrit rotated by e−
√
−1θ ′ . The paths are illustrated in the case (p,q) = (4,6) in

Figure 3.6. The feint lines are the preliminary paths γl,m and the dashed line is at
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Figure 3.6: The paths γ ′l,m in modulus-(argument+π) space, when (p,q) = (4,6).

height 2π .

This construction has the following key properties:

• The clockwise ordering of the tangent directions γ̇ ′l,m(0) is by decreasing value

of θl,m.

• If θl,m = θL,M, then γ ′l,m = γ ′L,M.

• If θl,m 6= θL,M, then γ ′l,m and γ ′L,M are disjoint unless θl,m > θL,M + 2π (or

vice versa), in which case they intersect once, transversely, close to −ζ LηMδ

(respectively −ζ lηmδ ).

The control on the position of the intersection point in the third property is the reason

for the curious kink in the paths γ ′l,m for θl,m ≥ 2π . If we had instead taken these

paths to be (δ ,0) to (δ + δ ′,θl,m− θ ′) to (−ccrit,θl,m− θ ′) then the intersection

between γ ′l,m and γ ′L,M when θl,m > θL,M +2π would have occurred on the sloping

regions of both paths, and therefore been awkward to locate.

Our next task is to explain how to modify those γ ′l,m for which θl,m > 2π in

order to remove the transverse intersections just described. The key observation is:

Lemma 3.3.3. Suppose θl,m > θL,M +2π , and let z denote the intersection point of

γ ′l,m and γ ′L,M. Inside the fibre Σz = w̌−1
ε (z) there are vanishing cycles corresponding
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to the critical points (ζ l x̌+crit,η
my̌+crit) and (ζ Lx̌+crit,η

M y̌+crit) and the truncations of the

vanishing paths γ ′l,m and γ ′L,M. Denoting these by V1 and V2 respectively, we have

V1∩V2 = /0.

Proof. First note that if l ≤ L then θl,m− θL,M is at most 2π(q− 2)/(q− 1), so

we must have l > L and similarly m > M. By applying f−1
L,M we may then assume

without loss of generality that L = M = 0 and l,m > 0. The former means that z

is approximately −δ , and that V2 ⊂ Σz is approximately 0,0V pr
0 ⊂ Σ. The curve V1,

meanwhile, is constructed in approximately the same way as l,mV pr
0 but with the

parallel transport around the circle of radius δ done from θl,m to 2π , rather than to 0.

For the rest of the argument, we take these approximations to be exact. Since the

cycles V1 and V2 are compact, once we show that they are disjoint after our small

approximation we automatically deduce that they were disjoint before (compact and

disjoint implies separated by a positive distance).

Since l and m are both positive we see that V1 and V2 =
0,0V pr

0 are disjoint on

Σ′⊂ Σ, and that the only neck region that they both pass through is that corresponding

to Vx̌y̌. This means that the only possible intersections occur in this neck, which we

can coordinatise by projection to x̌. In this projection we know that 0,0V pr
0 and V1 are

parametrised by

x̌ =
√

δ/εes and x̌ =
√

δ/εes+
√
−1ϕ ,

respectively, where ϕ is given by setting t = 2π in (3.7). It therefore suffices to show

that this function ϕ never hits 2πZ. To prove this, simply note that the function

is monotonically increasing from 2π−2πm/(q−1), which is strictly positive, to

2πl/(p−1), which is strictly less than 2π .

Now, let γ ′′l,m denote the path obtained from γ ′l,m by introducing a long thin finger

which loops around the radial segment of γ ′L,M, for each (L,M) with θl,m > θL,M +2π .

Figure 3.7 illustrates γ ′′2,4 in the case (p,q) = (4,6). The feint lines show the paths

γ ′L,M which we have had to loop around. In principle, each time we go around one
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Figure 3.7: The path γ ′′2,4 when (p,q) = (4,6).

of the fingers the ‘intermediate vanishing cycle’ V1 is changed by the monodromy

around ζ LηMccrit, which is precisely the Dehn twist in V2 (or, more accurately, the

product of the Dehn twists in all cycles constructed in the same way as V2 as (L,M)

ranges over all pairs with the same value of θL,M), but by Lemma 3.3.3 this has no

effect. We conclude that the vanishing cycles for the new paths γ ′′l,m coincide with

those of the previous paths γ ′l,m, which in turn are small perturbations of those of the

preliminary paths γl,m. Note also that we can construct the new paths so as not to

introduce any new intersections between them (for example, we can make sure the

fingers for γ ′′2,3 go outside the fingers for γ ′′2,4 shown in Figure 3.7).

The upshot is that we now have vanishing paths γ ′′l,m, plus the vanishing paths

connecting −δ to 0, which form a distinguished basis except for the fact that some

of the paths coincide with each other. This is straightforwardly fixed by making a

small perturbation of the fibration to separate the critical values, and corresponding

small perturbations of the paths. The precise way in which this is done will affect

the ordering of the paths, and hence the ordering of the vanishing cycles in A, but

this is irrelevant since the ambiguity is always between cycles which are disjoint and

therefore orthogonal in the category.

We conclude:

Proposition 3.3.4. There exists a Morsification of w̌ and a distinguished basis of

vanishing paths such that the corresponding vanishing cycles are arbitrarily small
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perturbations of the l,mV pr
0 , lVy̌w̌, mVx̌w̌ and Vx̌y̌ as constructed above. The l,mV pr

0 are

ordered by decreasing value of θl,m, and by choosing the starting direction for our

clockwise ordering to be e
√
−1θ , for θ a small positive angle, they occur before all

of the other vanishing cycles.

3.3.5 Isotoping the vanishing cycles and computing the

morphisms

Let us refer to the small perturbations of the preliminary vanishing cycles l,mV0 that

appear in Proposition 3.3.4 as temporary vanishing cycles. In order to compute the

category A we need to understand the intersection pattern of these temporary cycles.

Some pairs of these cycles were already transverse before perturbing, as described in

Remark 3.3.2 – in fact, all pairs except those of the form l,mV pr
0 , L,MV pr

0 with l = L

or m = M – so their intersections are unaffected by the small perturbations. For the

non-transverse pairs of preliminary cycles, however, which actually overlap along

segments, we cannot pin down the intersections of the corresponding temporary

cycles without keeping more careful track of the perturbations, which is impractical.

In order to overcome this, we shall modify these problematic temporary cycles,

which are small perturbations of the l,mV pr
0 , by Hamiltonian isotopies to obtain final

vanishing cycles l,mV0 which we will use to compute A. This does not affect the

quasi-equivalence type of the category. These isotopies will be small in the absolute

sense, and in particular will only affect intersections between pairs of cycles which

were non-transverse before perturbing from preliminary to temporary, but will not

be small compared with these perturbations. Indeed, their very point is to undo any

uncertainty in the intersection pattern which these perturbations introduced.

Remark 3.3.5. Since each waist curve lVy̌w̌, mVx̌w̌, and Vx̌y̌ was already transverse

to all other cycles, the corresponding perturbed curve in Proposition 3.3.4 has the

same intersection pattern. We therefore do not notationally distinguish between the

waist curves and their perturbations.

We only need to describe the isotopies on the regions where the preliminary

cycles were non-transverse. This means that, for each l,mV pr
0 , we may focus on
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neighbourhoods of its segments lying in the x̌-axis and y̌-axis regions of Σ′. So fix

an (l,m) and consider the part of l,mV pr
0 (strictly the temporary cycle obtained from

this) lying in the x̌-axis part of Σ′ and the Vx̌y̌- and lVy̌w̌-necks. We view this in the

x̌-projection, as in Figure 3.5.

We first isotope the x̌-axis segment, between the two necks, anticlockwise about

x̌ = 0 by an amount proportional to m. This of course requires corresponding small

modifications at the boundaries of the neck regions to keep the curve continuous. To

make the isotopy Hamiltonian, we then push the curve slightly clockwise just inside

the Vx̌y̌-neck. The result is shown schematically in Figure 3.8 for the (l,m) = (1,0)

and (1,1) cycles with (p,q) = (4,3). We then do a similar thing on the y̌-axis part

Figure 3.8: The x̌-projection of the final vanishing cycles 1,0V0 and 1,1V0 in the x̌-axis part
of Σ′ and the Vx̌y̌- and 1Vy̌w̌-necks, with (p,q) = (4,3).

of Σ′ and the Vx̌y̌- and lVy̌w̌-necks.

The result is that the final cycles l,mV0 are all pairwise disjoint, except on the

Vx̌y̌-neck. Inside this neck, the intersections between l,mV0 and L,MV0 remain as

described in Remark 3.3.2 when l 6= L and m 6= M. When l = L and (without loss

of generality) m > M the effect is as follows. Before perturbing and isotoping, the

x̌-arguments of the curves on the Vx̌y̌-neck are described by (3.8) and illustrated in

the left-hand part of Figure 3.9. In particular, the curves converge as |x̌| becomes

large. The isotoped curves are shown schematically in the right-hand part of the

same diagram, and we see that now they intersect once, transversely, where l,mV0 has

been pushed further anticlockwise than l,MV0.
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arg x̌

2πl/(p−1)

−2πM/(q−1)

−2πm/(q−1)

log |x̌| log |x̌|

Figure 3.9: The Vx̌y̌-neck regions of the curves l,mV0 and l,MV0 before (left) and after (right)
perturbing and isotoping.

Combining this with Remark 3.3.2 and Proposition 3.3.4 (with the l,mV0 now

being used in place of the l,mV pr
0 ) we obtain a model for A with precisely the

following basis of morphisms:

• An identity morphism for each object.

• A morphism from l,mV0 to L,MV0 whenever (l,m) 6= (L,M) but both l ≥ L and

m≥M.

• A morphism from each l,mV0 to each of Vx̌y̌, lVy̌w̌ and mVx̌w̌.

This is a chain-level description, but for any pair of objects the morphism complexes

are either one- or zero-dimensional, so all differentials trivially vanish. Additively

the cohomology algebra therefore matches exactly with the quiver description of B

in Figure 3.1, under the identification

l,mV0↔ i, jK0

lVy̌w̌↔ iKx[3]

mVx̌w̌↔ jKy[3]

Vx̌y̌↔ Kw[3]

with
i+ l = p−1

j+m = q−1.
(3.9)

To complete the proof of Theorem 3.1.1 in the loop case, we just need to check that

the compositions agree, and that the vanishing cycles can be graded so as to place all

morphisms in degree 0. These are the subjects of the next two subsections.
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Remark 3.3.6. The identification (3.9) is between the objects of A ⊂ F(Σ) and

B ⊂ mf(A2,Γw,w). In the ultimate equivalence DbFS(w̌) ' mf(A2,Γw,w) the

vanishing cycles in (3.9) should be replaced by their images under the equivalence

TwA→ DbFS(w̌), which are the corresponding Lefschetz thimbles.

3.3.6 Composition

Suppose L0, L1 and L2 are three (final) vanishing cycles such that L0 < L1 < L2 with

respect to the ordering on the category A (we are calling them L rather than V to

avoid conflict with our earlier notation for specific cycles). We need to compute the

composition

HF•(L1,L2)⊗HF•(L0,L1)→ HF•(L0,L2), (3.10)

which is defined by counting pseudo-holomorphic triangles, and Seidel [Sei08b,

Section (13b)] shows that this can be done combinatorially by simply counting

triangular regions bounded by the Li. The crucial point is that one can do without

Hamiltonian perturbations or perturbations of the complex structure because the

directedness of the category automatically rules out contributions from constant

discs. (It also rules out discs in which the ordering of the Lagrangians around the

boundary does not match their ordering in the category.)

In order for this composition to have a chance of being non-zero (i.e. in order

for all three HF• groups to be non-zero) we must have L0 =
l,mV0 and L1 =

L,MV0

for some distinct (l,m) and (L,M) with l ≥ L and m ≥ M. We then have four

cases, depending on whether L2 is Vx̌y̌, LVy̌w̌, MVx̌w̌, or of the form r,sV0 for some

(r,s) 6= (L,M) with r ≤ L and s ≤M. We restrict our attention to these four cases

from now on.

In each case, there is a single obvious holomorphic triangle contributing to

the product. In the first and fourth cases the triangle lies in the Vx̌y̌-neck region, as

illustrated in Theorem 3.10, whilst in the second (respectively third) case it stretches

between the Vx̌y̌- and lVy̌w̌- (respectively mVx̌w̌-) neck regions in the x̌- (respectively

y̌-) axis part of Σ′ as shown in Figure 3.11. We claim that there are no other triangles,

whence (3.10) is the non-degenerate multiplication e12⊗ e01 7→ ±e02, where ei j is
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log |x̌|

arg x̌

L0

L1

L2 L0

L1

L2

Figure 3.10: The obvious triangles in the Vx̌y̌-neck contributing to the product in the first
(left) and fourth (right) cases.

Figure 3.11: The x̌-projection of the obvious triangle between 1,0V0, 1,1V0, and 1Vy̌w̌, when
(p,q) = (4,3).

the generator of HF•(Li,L j) corresponding to the unique intersection point of Li

and L j. In fact, there are two natural generators, differing by sign, and the ± in the

multiplication depends on the specific generators chosen, as well as the orientation

on the moduli space of holomorphic triangles, but we shall argue shortly that all

signs can be arranged to be positive.

To prove the claim, suppose u is a non-constant holomorphic triangle with

boundary on L∪, defined to be the union of the Li. By the open mapping theorem,

after deleting L∪ the image of u consists of a union of components of Σ\L∪ whose

closures in Σ are compact. Such components naturally correspond to generators

of H2(Σ/L∪) ' H2(Σ,L∪), which the long exact sequence of the pair tells us is

isomorphic to the kernel of the inclusion pushforward H1(L∪)→ H1(Σ). In all of

our cases, the space L∪ is homeomorphic to three circles that touch pairwise, so its

H1 has rank four. Its image in H1(Σ) meanwhile, contains the classes of L0, L1 and
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L2, which are linearly independent since the vanishing cycles form a basis for H1(Σ).

We conclude that H2(Σ,L∪) has rank at most one, so there is at most one component

of Σ\L∪ that u can enter. We have already seen that there is at least one component,

and counted the obvious triangle that it contributes, so we conclude that there are no

other triangles.

To compute the signs, we should equip each Li with an orientation and the non-

trivial spin structure (this is the one that is induced by viewing Li as the boundary of

a Lefschetz thimble in the total space of our Morsified fibration), and then calculate

the induced orientation on the moduli space of holomorphic triangles. As mentioned

above, however, we can choose the generators of the morphism spaces so that all

of the signs turn out to be positive. We make these choices by induction on the

length of the morphism, defined to be the maximal length of a chain of non-identity

morphisms whose composition is the given morphism (so, for example, the length of

a generator of HF•(l,mV0,
L,MV0) is l−L+m−M).

First, choose arbitrary signs for the generators of length 1. Now modify these

as follows. Start at the bottom left-hand square in the quiver picture Figure 3.1 –

explicitly this corresponds to the square

p−1,q−2V0
p−2,q−2V0

p−1,q−1V0
p−2,q−1V0

If this commutes then do nothing, otherwise reverse the sign of the morphism along

the top edge. Then consider the next square to the right and do the same, and continue

all the way along to the bottom right-hand square. Now run the same procedure on

the next row of squares up, and then the next, all the way to the top. In this way

we obtain sign choices for all generators of length 1 such that the small squares

commute.

For each morphism space of length k > 1, we choose its generator by expressing

the space as a composition of k morphism spaces of length 1 and taking the positive

generator of each factor. There may be several different ways of decomposing the
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space into length 1 factors, but any two can be joined by a chain of moves where one

commutes across a small square. We have arranged it so that these moves have no

effect, so there is no ambiguity in the overall procedure. This proves that all signs

can be taken to be +.

We conclude:

Proposition 3.3.7. There is a model for A which, under the identification (3.9), is

described by the quiver in Figure 3.1 up to yet-to-be-determined gradings.

3.3.7 Gradings and completing the proof

Recall from [Sei00, Sei08b] that to equip the Fukaya category of a symplectic

manifold X with a Z-grading one must choose a homotopy class of trivialisation of

the square K−2
X of the anticanonical bundle of X ; this is possible if and only if 2c1(X)

vanishes in H2(X), and in this case the set of choices forms a torsor for H1(X). We

are interested in the Fukaya–Seidel category FS(w̌) and the subcategory A of the

compact Fukaya category of the smooth fibre, for which the relevant choices of X

are C2 and Σ respectively. The former has a unique grading, defined by the section

σ = (∂x̌∧∂y̌)
⊗2 of K−2

C2 , which induces a grading of the latter, and it is with respect

to this induced grading that the quasi-equivalence TwA→FS(w̌) is graded.

Trivialisations of K−2
Σ

correspond naturally to line fields ` on Σ, i.e. sections

of the real projectivisation PRT Σ of the tangent bundle, and given a choice of ` the

Lagrangian L represented by an embedded curve γ : S1→ Σ is gradable if and only if

the sections γ∗` and γ∗T L of γ∗PRT Σ are homotopic. In this case a grading of L is a

homotopy class of homotopy between them. At each point of L we can measure the

anticlockwise angle from ` to T L, and we denote this by πα , where α is an element

of R/Z. The gradings of L are then in bijection with lifts α# of this element to R.

Given two graded Lagrangians L0 and L1, which intersect transversely at a point x,

let their corresponding lifts at x be α#
0 and α#

1 respectively. By [Sei08b, Example

11.20], the grading of x as a generator of the Floer complex CF•(L0,L1) is then given

by

bα#
1 −α

#
0c+1. (3.11)
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From now on we will use ` to denote the specific (homotopy class of) line field

corresponding to the grading on Σ induced by the grading on C2.

To compute `, note that each Lefschetz thimble ∆ is gradable with respect to σ

(∆ is contractible so the grading obstruction trivially vanishes), and each choice of

grading induces a grading of the corresponding vanishing cycle V ⊂ Σ with respect

to `. In particular, all of the vanishing cycles V are gradable with respect to `, and

since they form a basis for H1(Σ) this property determines ` uniquely (cf. Section

4.3.1).

Remark 3.3.8. Recall that the ordering on A is determined by a choice of starting

direction in the base C, and, strictly speaking, this choice enters into the construction

of the bijection between gradings of a thimble ∆ and of the corresponding vanishing

cycle V . This is unimportant for our present purposes, but we will see a manifestation

of it in Section 3.6.2, where a change in this direction leads to a change in the grading

of a vanishing cycle.

Using this characterisation, one can draw ` as shown in Figure 3.12: the left-

hand diagram depicts a foliation of the line {u+ v = ε} with the points (ε,0) and

(0,ε) deleted, and we lift its tangent distribution to give the line field on the branched

cover comprising the {w̌= ε} part of Σ′ and the attached neck regions; the right-hand

diagram depicts a foliation whose tangent distribution gives the line field on the

x̌-axis part of Σ′ and the attached neck regions in the case q = 4 – it is clear how this

generalises to other values of q and that a similar picture can be drawn for the y̌-axis

part.

Figure 3.12: Foliations defining the line field ` used to grade Σ.
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As usual, the dotted circles represent the boundaries of the neck regions. Note

that on each neck region the line field is longitudinal, so the different pictures glue

together.

Each l,mV0 is approximately tangent to ` along its approximately straight seg-

ments in the three components of Σ′, and we choose to grade it so that the homotopy

from T L to ` is approximately constant on these regions. This is consistent, in the

sense that these homotopies patch together across the neck regions. On each neck

region, the lift α# is valued approximately between 0 and 1/2, and where two of

these cycles intersect the one with the greater value of θl,m is ‘steeper’ and hence has

greater α#. We conclude that for distinct (l,m) and (L,M) with l ≥ L and m ≥M

the generator of HF•(l,mV0,
L,MV0) lies in degree 0 (in the notation of (3.11) we have

1/2 > α#
0 > α#

1 > 0).

Each of the other vanishing cycles is a waist curve on a neck region and as such

is orthogonal to the line field. We grade it so that the lift α# is −1/2. This puts the

generators of

HF•(l,mV0,
lVy̌w̌), HF•(l,mV0,

mVx̌w̌), and HF•(l,mV0,Vx̌y̌)

all in degree 0. This means that the identification (3.9) matches up gradings, and we

deduce:

Theorem 3.3.9 (Theorem 3.1.1, loop polynomial case). Under (3.9), the Z-graded

A∞-category A is described by the quiver with relations in Figure 3.1 and is formal.

In particular, by Theorem 3.2.13 it is quasi-equivalent to B, and hence there is an

induced quasi-equivalence

mf(A2,Γw,w)' DbFS(w̌).

Proof. The cohomology-level version of the first statement follows from Proposition

3.3.7 plus the above grading computations. Formality then follows immediately

from directedness and the fact that the morphisms are concentrated in degree 0 as

in Theorem 3.2.13. This shows that A and B are quasi-equivalent, and the final
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statement then follows from the argument outlined in Section 3.1.1.

3.4 B-model for chain polynomials

3.4.1 The basic objects

We now deal with the case of the chain polynomial w = xpy+ yq. This time the

maximal grading group L is the abelian group freely generated by~x,~y and~c modulo

the relations

p~x+~y = q~y =~c.

In contrast to the loop case, we have L/Z~c'Zpq, generated by~x but not by~y =−p~x.

In keeping with our earlier notation, let S be the L-graded algebra, C[x,y], with x and

y in degrees~x and~y respectively, and let R = S/(w). Let w now denote xp + yq−1 so

that w = yw.

The stack [w−1(0)/Γw] has two components, whose structure sheaves corre-

spond to the matrix factorisations

Ky
• = (· · · → S(−~c) w−→ S(−~y) y−→ S→ ···),

and

Kw
• = (· · · → S(−~c) y−→ S(−~c+~y) w−→ S→ ···).

We will need the shifts

jKy = Ky(( j+1−q)~y) for j = 1, . . . ,q−1.

Note that Kw[1]' Ky(~y).

The unique singular point of the stack is still the origin, and the objects we need

that are supported at this point are the i, jK0 defined by

S(~y) S(( j+1)~y) S(~c+~y)

S(−~c+ i~x+( j+1)~y) S(i~x+~y) S(i~x+( j+1)~y)

y j

−xi

· · ·
⊕

yq− j

xi⊕ ⊕
· · ·xp−iy

yq− j

−xp−iy

y j
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for i = 1, . . . , p − 1 and j = 1, . . . ,q − 1, obtained by stabilising R(i~x + ( j +

1)~y)/(xi,y j).

3.4.2 Morphisms between the Ky’s and Kw

For all l in L, and all integers m, we have Hom2m(Ky,Ky(l))' (R/(y,w))m~c+l and

Hom2m−1(Ky,Ky(l)) = 0. The analogue of Lemma 3.2.2 and Lemma 3.2.3, proved

by similar arguments, is now:

Lemma 3.4.1. Suppose a and b are integers, with a≤ p−1, and s is an element of

S (or R) which is homogeneous modulo~c, of degree a~x+b~y mod~c. Then:

(i) The element s is divisible by xa.

(ii) If also b≤ q−1, then s lies in the ideal (xayb,xp+a).

(iii) If a = b = 0, then the non-constant terms of s lie in (xpq,xpy,yq).

Applying this to the above computation we obtain:

Lemma 3.4.2. The objects 1Ky, . . .
q−1Ky are exceptional and pairwise orthogonal.

Using the fact that Kw[1]' Ky(~y), we also get:

Lemma 3.4.3. The object Kw is exceptional and is orthogonal to the jKy.

3.4.3 Morphisms between Ky’s and Kw and K0’s

For all l and all (i, j), Hom•(Ky(l), i, jK0) is given by the cohomology of the complex

· · · → (R/(xi,y j))i~x+( j+1)~y−l
y−→ (R/(xi,y j))i~x+( j+2)~y−l

w−→ (R/(xi,y j))~c+i~x+( j+1)~y−l → ··· .

By Lemma 3.4.1(i) we see that for all J

Hom•(JKy,
i, jK0) = Hom•(Kw,

i, jK0) = 0.

Morphisms in the other directions are computed by the complex
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(R/(y))−~c−~y+l (R/(y))−( j+1)~y+l (R/(y))−~y+l

(R/(y))−i~x−( j+1)~y+l (R/(y))−i~x−~y+l (R/(y))~c−i~x−( j+1)~y+l

yq− j

−xp−iy

· · ·
⊕

y j

xp−iy⊕ ⊕
· · ·xi

y j

−xi

yq− j

The only non-vanishing differentials are xi, so we get

Hom2m(i, jK0,
JKy)' (R/(xi,y))(m−2)~c+J~y,

Hom2m+1(i, jK0,
JKy)' (R/(xi,y))(m−1)~c+(J− j)~y,

Hom2m(i, jK0,Kw)' (R/(xi,y))(m−1)~c− j~y,

Hom2m+1(i, jK0,Kw)' (R/(xi,y))(m−1)~c,

and hence:

Lemma 3.4.4. In HMF(A2,Γw,w) there are no morphisms from JKy or Kw to i, jK0.

The morphism spaces in the other direction are spanned by

(1,0) ∈ Hom3(i, jK0,
jKy)

and

(0,1) ∈ Hom3(i, jK0,Kw)

in the above complexes.

Proof. The even degree morphisms all vanish by Lemma 3.4.1(ii), and if j 6= J

then the same holds for Hom2m+1(i, jK0,
JKy) (if J < j then rewrite the grading as

(q+J− j)~y mod~c). Lemma 3.4.1(iii) tells us that the only surviving odd morphisms

are the constants.

3.4.4 Morphisms between the K0’s

The complex computing Hom•(i, jK0,
I,JK0) is
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(R/(xI,yJ))−~c+I~x+J~y (R/(xI,yJ))I~x+(J− j)~y (R/(xI,yJ))I~x+J~y

(R/(xI,yJ))(I−i)~x+(J− j)~y (R/(xI,yJ))(I−i)~x+J~y (R/(xI,yJ))~c+(I−i)~x+(J− j)~y

yq− j

−xp−iy

· · ·
⊕

y j

xp−iy⊕ ⊕
· · ·xi

y j

−xi

yq− j

The top row vanishes by Lemma 3.4.1(i), and the same is true of the bottom row if

I < i (after adding p~x+~y mod~c to the gradings), so assume that I ≥ i. The complex

becomes

· · · → (R/(xI,yJ))(I−i)~x+(J− j)~y
y j

−→ (R/(xI,yJ))(I−i)~x+J~y
yq− j

−−→ (R/(xI,yJ))~c+(I−i)~x+(J− j)~y→ ···

and the odd position terms vanish by Lemma 3.4.1(ii), so Hom2m+1(i, jK0,
I,JK0) = 0,

and

Hom2m(i, jK0,
I,JK0)' (R/(xI,yJ))m~c+(I−i)~x+(J− j)~y.

If J < j then this is zero by Lemma 3.4.1(ii) (after adding q~y mod~c to the grading),

so assume J ≥ j. Lemma 3.4.1(ii) tells us that any element is divisible by xI−iyJ− j

modulo (xI,yJ), and then Lemma 3.4.1(iii) tells us that only constant multiples

survive. We conclude:

Lemma 3.4.5. For all (i, j) and (I,J) we have that

Hom•(i, jK0,
I,JK0)'

C · xI−iyJ− j if I ≥ i, J ≥ j and •= 0

0 otherwise.

3.4.5 The total endomorphism algebra of the basic objects

It is easy to compute the compositions between the morphisms and obtain the

following description of the full subcategory B of mf(A2,Γw,w) on the objects
jKy[3], Kw[3], i, jK0:

Theorem 3.4.6. The homotopy category H0(B) is the path algebra of the quiver-

with-relations described in Figure 3.13. Any Z-graded A∞-structure on this algebra
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– and hence in particular that induced from the dg-structure on mf(A2,Γw,w) – is

formal.

· · ·

· · ·

· · ·

...
...

...
...

.... .
.

i, jK0
jKy[3]

Kw[3]

Relations:

(i) Squares commute

(ii) Dashed composi-
tions vanish

Figure 3.13: The quiver describing the category B for chain polynomials.

3.4.6 Generation

The final thing we need to check is:

Lemma 3.4.7. The objects in B split-generate HMF(A2,Γw,w).

Proof. Let V = { jKy,Kw,
i, jK0}. As in the loop case, it suffices to prove that the

category 〈V 〉 contains all of the L/Z~c-grading shifts of R/(x,y). Again following the

loop case, we easily have that R(i~x+( j+1)~y)/(x,y) lies in 〈V 〉 for any 1≤ i≤ p−1

and 1≤ j ≤ q−1.

By combining Kw ' Ky(~y)[−1], the jKy, and all of their [·]-shifts, we see that

〈V 〉 contains R(l)/(y) for all l in Z~y+Z~c (the Z~c is redundant here but we include it

for clarity). Consequently, for each integer j we have that 〈V 〉 contains the cokernel

of

R(( j+1)~y−~c)/(y) xp
−→ R( j~y)/(y),

which is R( j~y)/(xp,y). Peeling off one-dimensional pieces R(i~x+ j~y)/(x,y) for

i = −1, . . . ,−(p− 1) by taking cones, we’re left with R( j~y)/(x,y). If j lies in

1, . . . ,q− 1 then (after applying the trivial operation (p~x+~y)[−2]) each of these

pieces is in 〈V 〉 by the previous paragraph. The conclusion is that R( j~y)/(x,y) lies

in 〈V 〉 for all such j.
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We have therefore constructed R(a~x+b~y)/(x,y) for 0≤ a≤ p−1 and 0≤ b≤

q−1 except for (a,b) = (0,0) and (a,b) = (1,1), . . . ,(1, p−1). To obtain the latter,

consider the extension

0→ R/(w) xi
−→ R(i~x)/(w)→ R(i~x)/(xi,yq−1)→ 0

for i = 1, . . . , p−1. The outer terms lie in 〈V 〉 (they are Kw and i,q−1K0[−2]), so we

deduce that R(i~x)/(w) also lies in 〈V 〉. Again using the fact that Kw ' Ky(~y)[−1],

we get that R(i~x+~y)/(y) is in 〈V 〉 for i = 0, . . . , p− 1 (the i = 0 case comes from

Kw[1] itself, not from the preceding argument). From these we see that

R(i~x+~y)/(x,y)' Cone
(
R((i−1)~x+ y)/(y) x−→ R(i~x+~y)/(y)

)
lies in 〈V 〉 for i = 1, . . . , p−1.

All that is left to show now is that we have R/(x,y) in 〈V 〉, and this closely

follows the loop case: we can realise this module as the cokernel of

R(−~x)/(xpq−1,y) x−→ R/(xpq,y),

and the domain can be built of the shifts of R/(x,y) that we already have. The

codomain, meanwhile, is given by

Cone
(
R(−(q−1)~c)/(y) xpq

−−→ R/(y)
)
.

Remark 3.4.8. The R(l)/(x,y) still only split-generate the category (which we saw

for loop polynomials in Remark 3.2.19), since the above proof shows that they are

annihilated by the homomorphism

K0(mf(A2,Γw,w))→ Z2

which sends the basis elements i, jK0 to 0 but jKy and Kw to 1.

As in the loop case, we deduce:
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Theorem 3.4.9 (Theorem 3.1.2, chain polynomial case). The object

E :=
( ⊕

i=1,...,p−1
j=1,...,q−1

i, jK0

)
⊕
( q−1⊕

j=1

jKy[3]
)
⊕Kw[3]

is a tilting object for mf(A2,Γw,w).

This was proved by Futaki–Ueda [FU13, Section 4] in the case q = 2.

3.5 A-model for chain polynomials

3.5.1 The setup

Just as for the B-model, our basic strategy for understanding the A-model will

closely follow the loop polynomial case. This time the Berglund–Hübsch transpose

is w̌ = x̌p + x̌y̌q, and our starting point is once more the resonant Morsification

w̌ε = w̌− ε x̌y̌ for small positive real ε . We denote x̌p−1 + y̌q by w̌. The critical

points now fall into three types:

(i) x̌ = 0, y̌q−1 = ε

(ii) x̌ = y̌ = 0

(iii) y̌q−1 = ε

q , x̌p−1 = (q−1)ε y̌
pq .

The first two types have critical value zero, whilst the third type has critical value

−x̌y̌ε(p−1)(q−1)/pq,

on the ray through −x̌y̌. These critical points are indeed all Morse.

There is a unique positive real solution to (iii) which we denote by (x̌+crit, y̌
+
crit),

and again we call the corresponding (negative real) critical value ccrit. Still letting ζ

and η denote the roots of unity

ζ = e2π
√
−1/(p−1) and η = e2π

√
−1/(q−1),
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but now also letting µ = e2π
√
−1/(p−1)(q−1), the type (iii) critical points are

{(ζ l
µ

mx̌+crit,η
my̌+crit) : 0≤ l ≤ p−2, 0≤ m≤ q−2},

with critical values µ(q−1)l+pmccrit.

Taking regular fibre Σ= w̌−1
ε (−δ ) with 0< δ � ε , we again choose the straight

line segment from −δ to 0 as the vanishing path for the critical points over zero,

and denote the corresponding vanishing cycles by mVx̌w̌ and Vx̌y̌. We also choose the

same preliminary vanishing paths γl,m as before, but with θl,m now given by

θl,m = 2π

(
l

p−1
+

pm
(p−1)(q−1)

)
,

and write l,mV pr
0 for the preliminary vanishing cycles.

3.5.2 The vanishing cycles

The central fibre w̌−1
ε (0), shown in Figure 3.14, now has only two components,

namely the line {x̌ = 0} and the smooth curve {w̌ = ε y̌}. The q nodes are smoothed

to thin necks in Σ, whose complement we again refer to as Σ′, and we trivialise the

fibration w̌ε on this complement over the disc of radius δ . This time we compute

x̌ = 0

w̌ = ε y̌
q−1

Figure 3.14: The fibre w̌−1
ε (0) for chain polynomials.
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# punctures of Σ = gcd(p−1,q)+1

g(Σ) =
1
2
(pq− p+1−gcd(p−1,q)) .

Just as in the loop case, the preliminary cycle 0,0V pr
0 is given by the loop in the

positive quadrant of the real part of Σ. On Σ′, the other preliminary cycles are given

by the action of (ζ lµm,ηm). In particular, they are pairwise disjoint on the {w̌ = ε y̌}

part of Σ′ (since x̌ and y̌ are both nowhere-zero here). The only intersections on the

{x̌ = 0} part occur when the m-values coincide, and in this case the cycles overlap

(at least in the limit δ ↘ 0) exactly as before.

On the Vx̌y̌-neck region, the argument of the y̌-component of l,mV pr
0 interpolates

from

−2π

(
l

p−1
+

m
(p−1)(q−1)

)
to

2πm
q−1

as |y̌| increases, whilst on the mVx̌w̌-neck the argument of y̌−ηmy̌+crit interpolates

back the other way as its argument decreases. This is completely analogous to the

picture in Figure 3.5.

We modify the preliminary paths, and correspondingly perturb the fibration,

exactly as in Section 3.3.4. The chain polynomial version of Lemma 3.3.3 is:

Lemma 3.5.1. Suppose θl,m > θL,M + 2π , and let z = γ ′l,m ∩ γ ′L,M. Inside Σz =

w̌−1
ε (z) we have vanishing cycles V1 and V2 corresponding to the critical points

(ζ lµmx̌+crit,η
my̌+crit) and (ζ LµM x̌+crit,η

M y̌+crit) and the truncations of γ ′l,m and γ ′L,M.

These cycles are disjoint.

Proof. We must have l ≥ L and m > M, so we can apply f−1
L,M to get (L,M) = (0,0)

with m > 0. The latter ensures that V1 and V2 are disjoint on Σ′ ⊂ Σ≈ Σz, and that

their only possible intersection is in the Vx̌y̌-neck region. On this region the argument

of y̌ is approximately 0 for V2, and interpolates between

2π

(
1− l

p−1
− m

(p−1)(q−1)

)
and

2πm
q−1

for V1, so they are disjoint there too.
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This allows us to introduce fingers to the vanishing paths γ ′l,m, as before, without

affecting the vanishing cycles. We then make Hamiltonian isotopies as in Section

3.3.5 (but now only in the y̌-axis part of Σ′ and the Vx̌y̌- and mVx̌w̌-necks) to obtain

the final vanishing cycles. This gives a model for A with the following basis of

morphisms:

• An identity morphism for each object.

• A morphism from l,mV0 to L,MV0 whenever (l,m) 6= (L,M) but both l ≥ L and

m≥M.

• A morphism from each l,mV0 to Vx̌y̌ and to mVx̌w̌.

As in the loop case, the differentials on morphism complexes trivially vanish so we

are left to check compositions and gradings.

3.5.3 Composition and gradings

Once more we have one obvious triangle contributing to each non-trivial product,

and by the same homology computation as for loop polynomials there can be no

others. We can also run the same inductive argument to ensure that all of the signs in

the compositions are positive.

To grade the category we must again take the unique homotopy class of line field

` on Σ whose winding number along each vanishing cycle V is zero, and then pick a

homotopy from `|V to TV . By homotoping ` we may assume it points longitudinally

in each neck region, orthogonal to the waist curves, and then up to homotopy it must

look like the right-hand diagram in Figure 3.12 in the union of the neck regions and

the y̌-axis part of Σ′. We can then define the gradings in the same way as in the loop

case, and see that all morphisms then lie in degree 0.

The conclusion is:

Theorem 3.5.2 (Theorem 3.1.1, chain polynomial case). Under the correspondence

l,mV0↔ i, jK0

mVx̌w̌↔ jKy[3]

Vx̌y̌↔ Kw[3]

with
i+ l = p−1

j+m = q−1
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the Z-graded A∞-category A is described by the quiver with relations in Figure 3.13

and is formal, so there is a quasi-equivalence

mf(A2,Γw,w)' DbFS(w̌).

This was also proved by Futaki–Ueda for q = 2, as a special case of [FU13,

Theorem 1.2]. They state the result at the level of derived categories, i.e. after passing

to cohomology, but, as we have seen, it is trivial to upgrade from this to the full A∞

result.

3.6 Brieskorn–Pham polynomials

3.6.1 B-model

Now w is given by xp + yq, and the maximal grading group L is generated by~x,~y

and~c modulo

p~x = q~y =~c,

so is simply Zp⊕Zq, generated by~x = (1,0) and~y = (0,1). Let S = C[x,y], graded

by L in the obvious way, and let R = S/(w).

The stack [w−1(0)/Γw] has only one component this time, and the objects that

we need are the matrix factorisations i, jK0 given by

S S( j~y) S(~c)

S(−~c+ i~x+ j~y) S(i~x) S(i~x+ j~y)

y j

−xi

· · ·
⊕

yq− j

xi⊕ ⊕
· · ·xp−i

yq− j

−xp−i

y j

for i = 1, . . . , p−1 and j = 1, . . . ,q−1, stabilising R(i~x+ j~y)/(xi,y j).

For any (i, j) and (I,J) the morphism space Hom•(i, jK0,
I,JK0) is computed by

the complex
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(R/(xI,yJ))−~c+I~x+J~y (R/(xI,yJ))I~x+(J− j)~y (R/(xI,yJ))I~x+J~y

(R/(xI,yJ))(I−i)~x+(J− j)~y (R/(xI,yJ))(I−i)~x+J~y (R/(xI,yJ))~c+(I−i)~x+(J− j)~y

yq− j

−xp−i

· · ·
⊕

y j

xp−i⊕ ⊕
· · ·xi

y j

−xi

yq− j

By considering gradings modulo ~x and modulo ~y, one sees that the top row and

the odd position terms in the bottom row vanish, and the remaining terms vanish

if I < i or J < j. We therefore assume that I ≥ i and J ≥ j, and read off that

Hom2m+1(i, jK0,
I,JK0) = 0 and

Hom2m(i, jK0,
I,JK0)' (R/(xI,yJ))(I−i)~x+(J− j)~y.

Arguing as in the loop and chain cases, this is spanned by xI−iyJ− j.

The full A∞-subcategory of mf(A2,Γw,w) generated by the objects i, jK0 is

therefore described by the quiver with relations in Figure 3.15, and is formal as

before. This is the tensor product of the Ap−1 and Aq−1 quivers, which describe the

· · ·

· · ·

· · ·

...
...

...
.... .

.
i, jK0

Relations:

(i) Squares commute

Figure 3.15: The quiver describing the category B for Brieskorn–Pham polynomials.

one-variable graded matrix factorisations of xp and yq respectively.

To prove these objects generate, we just need to check that we can build all

L/Z~c-shifts of R/(x,y) from them. One easily constructs R(a~x+b~y)/(x,y) for a =

1, . . . , p−1, b = 1, . . . ,q−1 by taking cones on these generators as in the previous

cases. To construct the remaining shifts, note that the modules R(i~x+ j~y)/(xi,y j)

and R(~c)/(xp−i,yq− j) are isomorphic in the singularity category, as they give rise

to equivalent matrix factorisations. Taking i = p−1 and j = q−1,q−2, . . . ,1 in
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turn, we can inductively build the a = 0 shifts from R(~c)/(xp−i,qq− j). Reversing the

roles of x and y gives the remaining shifts. In contrast to Remark 3.2.19 and Remark

3.4.8, the R(l)/(x,y) now generate the category, rather than just split-generate.

We conclude the following well-known result, which goes back to at least

[FU09, Theorem 6], [FU11, Theorem 1.2]:

Theorem 3.6.1 (Theorem 3.1.2, Brieskorn–Pham polynomial case). The object

E :=
⊕

i=1,...,p−1
j=1,...,q−1

i, jK0

is a tilting object for mf(A2,Γw,w).

3.6.2 A-model

We consider the resonant Morsification w̌ε := x̌p+ y̌q−ε x̌y̌ of the Berglund–Hübsch

transpose w̌ = x̌p + y̌q. The critical points are:

(i) x̌ = y̌ = 0

(ii) x̌p−1 = ε y̌
p , y̌q−1 = ε x̌

q .

These are Morse, with critical values 0 and −x̌y̌ε(pq− p−q)/pq respectively. The

equations (ii) reduce to

x̌(p−1)(q−1)−1 =
εq

pq−1q
and y̌ =

px̌p−1

ε
,

so there is a unique positive real solution (x̌+crit, y̌
+
crit) whose critical value we denote

by ccrit as before. All other critical points differ by the action of (pq− p−q)th roots

of unity with weights (q−1,1), or equivalently (1, p−1), on (x̌, y̌). We parametrise

these critical points, and the associated vanishing paths and cycles, by

(l,m) ∈ ({0, . . . , p−2}×{0, . . . ,q−2})\{(p−2,q−2)}

as

(µ(q−1)l+mx̌+crit,µ
l+(p−1)my̌+crit),
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where µ = e2π
√
−1/(pq−p−q).

The fibre w̌−1
ε (0) is shown in Figure 3.16. This time it is irreducible. At infinity

w̌ = ε x̌y̌

Figure 3.16: The fibre w̌−1
ε (0) for Brieskorn–Pham polynomials.

the defining equation looks like x̌p + y̌q = 0 so the smooth fibre Σ = w̌−1
ε (−δ )

satisfies

# punctures of Σ = gcd(p,q)

g(Σ) =
1
2
((p−1)(q−1)−gcd(p,q)+1) .

We divide Σ into Σ′ and a single neck region, and trivialise the fibration on Σ′

over a small disc. We define preliminary vanishing paths and cycles Vx̌y̌ and l,mV pr
0

as usual, taking

θl,m =
2π(ql + pm)

pq− p−q
.

Note that by our bounds on l and m this lies in [0,4π). The cycle Vx̌y̌ is the waist

curve on the neck, whilst 0,0V pr
0 lives in the positive quadrant of the real part of Σ.

The other l,mV pr
0 are obtained from 0,0V pr

0 by the action of roots of unity on Σ′ and

by a local parallel transport computation on the neck. In particular, all intersections

between the vanishing cycles occur on the neck. We modify the vanishing paths

(and correspondingly perturb the fibration), introducing fingers to remove their

intersections, in the familiar way.

There is now no need to isotope the cycles further, since they are already all

transverse. In particular, on the Vx̌y̌-neck the argument of x̌ along l,mV pr
0 interpolates

from

−2π
l +(p−1)m
pq− p−q

to 2π
(q−1)l +m
pq− p−q
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as its modulus increases. The intersection pattern is thus described by the morphisms

in the quiver Figure 3.17, in the sense that the number of intersections between two

curves is the dimension of the corresponding morphism space; the l and m indices

decrease from bottom left to top right. This is not quite the pattern we want, but this

· · ·

· · ·

· · ·

...
...

...
.... .

.
l,mV0

Relations:

(i) Squares commute

Vx̌y̌

Figure 3.17: The quiver describing the intersection pattern.

can be rectified as follows. Recall that the ordering of the cycles is determined by

the clockwise ordering of the directions of their vanishing paths as they emanate

from the reference base point −δ . We have so far been starting the ordering from

the direction e
√
−1θ for 0 < θ � 2π , but we now change this to e−

√
−1θ . This has

the effect of moving Vx̌y̌ from last to first in the ordering, and hence modifying the

quiver from Figure 3.17 to Figure 3.15.

Remark 3.6.2. Alternatively, one can leave the starting direction as e
√
−1θ and

instead replace the indexing set

({0, . . . , p−2}×{0, . . . ,q−2})\{(p−2,q−2)},

over which (l,m) ranges, by

({0, . . . , p−2}×{0, . . . ,q−2})\{(0,0)}.

This moves the top right vertex inside the rectangle in Figure 3.17 to the bottom left.

Now θl,m lies in (0,4π], rather than [0,4π), so the prescription given at the start of
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Section 3.3.4 has to be modified so that γ ′l,m is described in modulus-(argument+π)

space by the piecewise linear path:

• From (δ ,0) to (δ + δ ′,θl,m) to (−ccrit,θl,m) for some small positive δ ′, if

θl,m ≤ 2π .

• From (δ ,0) to (δ +δ ′,2π+λθl,m) to (δ +2δ ′,2π+λθl,m) to (δ +3δ ′,θl,m−

θ ′)) to (−ccrit,θl,m−θ ′) for some small positive λ and θ ′, if θl,m > 2π .

Note that the inequalities < 2π and ≥ 2π have become ≤ 2π and > 2π , whilst the

λ (θl,m− 4π) terms have become λθl,m, so that the short horizontal segments in

Figure 3.6 are pushed slightly above the dashed 2π line.

Compositions are non-degenerate by the standard argument, and we can arrange

all signs to be positive. To fix gradings, we take the unique homotopy class of line

field ` on Σ with respect to which all vanishing cycles are gradable. We may assume

` is longitudinal on the neck, and equip the l,mV0 with the standard gradings (we

choose the lift α# to be approximately between 0 and 1/2). We previously gave Vx̌y̌

the grading with α# =−1/2, but now that we have changed the ordering we should

choose α# = 1/2 to put all morphisms in degree 0.

We arrive at the following result Futaki–Ueda [FU09, Theorem 5], [FU11,

Theorem 1.3]:

Theorem 3.6.3 (Theorem 3.1.1, Brieskorn–Pham polynomial case). Under the cor-

respondence
l,mV0↔ i, jK0

Vx̌y̌↔ 1,1K0

with
i+ l = p−1

j+m = q−1

the Z-graded A∞-category A is described by Figure 3.15 and is formal, so there is a

quasi-equivalence

mf(A2,Γw,w)' DbFS(w̌).



Chapter 4

Homological mirror symmetry for

Milnor fibres of invertible curve

singularities

4.1 Introduction
In this chapter, we study homological mirror symmetry where the A–models are

Milnor fibres of invertible polynomials in two variables, and where we take the

grading group on the B–side to be maximal. Our main theorem in this chapter is:

Theorem 4.1.1. Let w be an invertible polynomial in two variables with maximal

symmetry group Γw, and w̌ its transpose. Then there is a quasi-equivalence

DπF(V̌ )' perfZw,Γw

of Z-graded pretriangulated A∞-categories over C, where Zw,Γw is as in (1.6), and

V̌ := w̌−1(1) is the Milnor fibre of w̌.

4.1.1 Strategy of proof

Our strategy follows that of [LU18], where one reduces the proof of Theorem 4.1.1

to a deformation theory argument. We give an overview of the general strategy here,

although extrapolate on arguments as required in the case of curves in the subsequent

sections. For the case at hand, this approach is predicated on the proof of Theorem
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3.1.1 given in Chapter 3.

On the A–side of the correspondence, we have that there is a restriction functor

DbFS(w̌)→ DπF(V̌ )

S→ 7→ ∂S→ =: S,
(4.1)

where we equip the vanishing cycle ∂S→ with the induced (non-trivial) spin structure

and (trivial) local system13 and the trivial local system. Suppose that (S→i )
µ̌

i=1 is a

collection of thimbles which generates DbFS(w̌), where µ̌ = µ(w̌) is the Milnor

number of w̌, and that S→ is the corresponding full subcategory of DbFS(w̌) whose

objects are (S→i )
µ̌

i=1. Denote its A∞-endomorphism algebra by

A→ :=
µ̌⊕
i, j

homS→(S→i ,S→j ), (4.2)

and its cohomology algebra A→ :=H•(A→). Correspondingly, let S be the collection

(Si)
µ̌

i=1 of vanishing cycles equipped with the non-trivial spin structure, considered

as a full subcategory of the compact Fukaya category of the Milnor fibre, and A

its A∞-endomorphism algebra. Poincaré duality, (2.2), tells us that we can identify

H•(A) with

A := A→⊕ (A→)∨[1−n] (4.3)

as a vector space. In our case, we will deduce in Section 4.5 that the algebra structure

on A is induced purely from the A→–bimodule structure of (A→)∨[1−n]. Namely,

we have

(a, f ) · (b,g) = (ab,ag+ f b). (4.4)

This is known as a trivial extension algebra of degree n− 1. By the argument of

13We use the notation S→ here for vanishing cycles to distinguish from the specific vanishing
cycles V studied in the previous chapter.
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[Sei03, Lemma 5.4], when the weight ď0 6= 0, S split generates the compact Fukaya

category of the Milnor fibre, meaning

TwπA' DπF(V̌ ).

Therefore, in order to characterise this category, it is sufficient to identify the

A∞-structure on A which is given by A, up to gauge transformation (a.k.a. formal

diffeomorphism).

On the algebro-geometric side of the correspondence, again consider an admis-

sible Γ ⊆ Γw (we will later restrict ourselves to the maximally graded case). One

can consider the Jacobi algebra,

Jacw = C[x1, . . . ,xn]/(∂1w, . . . ,∂nw). (4.5)

Since the singularity is isolated, this algebra has dimension µ < ∞, the Milnor

number of w. Let Jw be the set of exponents for a basis of this algebra (not to be

confused with the grading element, which we are denoting by jw), and consider the

semi-universal unfoldings of w,

w̃ := w+ ∑
j∈Jw

ujx
j1
1 . . .x jn

n . (4.6)

Such unfoldings are universal in the sense that every other unfolding of w is induced

from w̃ by a change of coordinates; however, this change of coordinates is not

necessarily unique. These semi-universal unfoldings are parametrised by µ complex

parameters, and we set

U := SpecC[u1, . . . ,uµ ]. (4.7)
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We can therefore consider w̃ as a map

w̃ : An×U → A1, (4.8)

and define

wu := w̃|An×{u}. (4.9)

To such a polynomial wu, we associate a stack Vu, defined in the case of two

variables in (4.16). In the case where the weight d0 > 0, we want to compactify Vu

to a Calabi–Yau hypersurface in a quotient of weighted projective space by a finite

group, although this is not possible for every u ∈U . We extend the action of Γ on

An to An+1 as in (2.11), and define U+ ⊆U to be the subspace such that wu can be

quasi-homogenised to Wu ∈ C[x0,x1, . . . ,xn] with respect to this action. Following

[LU18], one then defines

Zu :=
[
(W−1

u (0)\ (0))/Γ
]

(4.10)

for each u ∈U+. It goes back to the work of Pinkham ([Pin74]), that the fact that

w is quasi-homogeneous forces there to be a C∗-action on U+. We therefore have

that Zu ' Zv if and only if v = t · u for some t ∈ C∗. We then have that Zu is a

compactification of Vu, and its dualising sheaf is, by construction, trivial.

For each u ∈U+ and fixed admissible group Γ, there is a functor

mf(An,Γ,w)→ Db Coh(Zu) (4.11)

which is to be expounded upon in Section 4.2 for the case of curves. In any case

where mf(An,Γ,w) has a tilting object, E , denote by Su the image of E by (4.11). It

is then a theorem of Lekili and Ueda ([LU18, Theorem 4.1]) that Su split-generates

perfZu. Let Au be the minimal A∞-endomorphism algebra of Su. Then, by the work

of Ueda in [Ued14], we have that Au := H•(Au) is also given by the degree n−1
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trivial extension algebra of the endomorphism algebra of E , and is, in particular,

independent of u.

In the maximally graded case (Γ = Γw), if Conjecture 1 is solved by exactly

matching generators, as in Chapter 3, we have that, at the level of cohomology, the

endomorphism algebra of the generators on both the A–, and B–sides are given

by the same algebra, which we denote by A. In light of this, establishing the

equivalence (1.7) boils down to identifying the A∞-structure given by the chain

level endomorphism algebra on the B–side which matches with that of the A–side.

With this perspective, homological mirror symmetry for Milnor fibres of invertible

polynomials turns into a deformation theory problem.

Recall that for a graded algebra, A, the Hochschild cochain complex has a

bigrading. Namely, we consider CCr+s(A,A)s to be the space of maps A⊗r→ A[s].

In general, if µ• is a minimal14 A∞-structure on A, then deformations which keep

µk for 1 ≤ k ≤ m fixed are controlled by
⊕

i>m−2 HH2(A)−i (see, for example,

[Sei03, Section 3a]). In particular, the deformations of A to a minimal A∞-model

with prescribed µ2 are controlled by HH2(A)<0 =
⊕

i>1 HH2(A)−i. It is natural to

consider the functor which takes an algebra to the set of gauge equivalence classes

of A∞-structures on that algebra, and a theorem of Polishchuk ([Pol17, Corollary

3.2.5]) shows that if HH1(A)<0 = 0, then this functor is represented by an affine

scheme, U∞(A). Moreover, if dimHH2(A)<0 < ∞, then [Pol17, Corollary 3.2.6]

shows that this scheme is of finite type. This functor was first studied in the context

of homological mirror symmetry in [LP17a]. There is a natural C∗-action on U∞(A)

given by sending {µk}∞
k=1 to {tk−2µk}∞

k=1, and this is denoted by A 7→ t∗A. Note

that the formal A∞-structure is the fixed point of this action. For each t 6= 0, we have

that A and t∗A are quasi-isomorphic, although not through a gauge transformation

([Sei03, Section 3]).

14Recall that an A∞-structure is minimal if µ1 = 0.
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Now, for each u ∈U+, we have that Au defines a minimal A∞-structure on A

with µ2 given as in (4.4). Therefore, it defines a point in U∞(A), and so we get a map

U+→U∞(A). (4.12)

If we can show that (4.12) is an isomorphism, then we know that every A∞-structure

on A is realised as the A∞-endomorphism algebra of Su for a unique u ∈U+. In the

case that the pair (w,Γ) is untwisted (see Definition 4.4.2), we have by a theorem

of Lekili and Ueda ([LU18, Theorem 1.6], cf. Theorem 4.6.1) that there is a C∗-

equivariant isomorphism of affine varieties U+
∼−→U∞(A) which sends the origin to

the formal A∞-structure. By removing the fixed point of the action on both sides, we

have that this isomorphism descends to an isomorphism

(
U+ \ (000)

)
/C∗ ∼−→

(
U∞(A)\ (000)

)
/C∗ =:M∞(A). (4.13)

Therefore, in the maximally graded case where w is untwisted, we have that, up to

scaling, there is a unique u ∈U+ for which (1.7) holds.

We end this section by briefly remarking that the moduli of A∞-structures

argument employed in this chapter fits into a broader framework which has proven

to be a fruitful approach to HMS, and whose scope is more wide-reaching than

that of invertible polynomials. In [LP11b] and [LP11a], the authors establish HMS

for the once punctured torus by studying the moduli space of A∞-structures on the

degree one trivial extension algebra of the A2 quiver. Interestingly, it was proven that

M∞(A)'M1,1, the moduli space of elliptic curves. Further connection was made

to the moduli theory of curves in [LP17c], where the authors show the moduli space

of A∞-structures on a particular algebra coincides with the modular compactification

of genus 1 curves with n marked points, as constructed in [Smy11]. This then leads

them to prove homological mirror symmetry for the n-punctured torus in [LP17a].
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4.1.2 Structure of the chapter

In Section 4.2, we recall some basic facts about unfoldings invertible polynomials in

two variables, as well as compute U+ in the relevant cases. In Section 4.3.1, we study

the symplectic topology of the Milnor fibre. In Section 4.4, we compute the relevant

Hochschild cohomology for invertible polynomials in two variables. In Section 4.5,

we recall some facts about generators and formality for Fukaya categories and the

proper algebraic stacks under consideration. Section 4.6 is then a proof of Theorem

4.1.1.

4.2 Unfoldings of invertible polynomials in two

variables
As in Chapter 3, we restrict ourselves to the case of invertible polynomials in two

variables, and consider the variables x,y,z rather than x1, x2, and x0, respectively.

The purpose of this section is to extrapolate on some of the technical details of

Section 4.1.1, and then to calculate the spaces of semi-universal unfoldings of the

invertible polynomials under consideration.

As in Section 1.1 and Chapter 2, let w be an invertible polynomial in two

variables, Γ ⊆ Γw an admissible subgroup of the maximal group of symmetries,

and Γ̂ the corresponding group of characters. The Jacobi algebra of w with Milnor

number µ is given in (4.5). Let Jw be as in Section 4.1.1, and semi-universal

unfoldings of w be as in (4.6). Let U and wu be are as in (4.7) and (4.9), respectively.

As already noted, Pinkham ([Pin74]) observed that w being quasi-homogeneous

means that the space U comes with a natural C∗-action on it. Namely, the action

on ui j is given by t ·ui j = th−d1i−d2 jui j where d1 and d2 are the weights of x and y,

respectively, and ui j is the coefficient of xiy j in the semi-universal unfolding. For

a fixed u ∈U , define Ru := C[x,y]/(wu), and observe that by scaling x,y, one can

identify Ru ' Rt·u for t ∈ C∗. The origin is the only fixed point of this action.

For a fixed Γ⊆ Γw, we would like to quasi-homogenise wu by extending the
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action of Γ to A3 according to (2.11). Therefore, the action on the z variable is given

by setting

χ0(t1, t2) = χ(t1, t2)t−1
1 t−1

2 . (4.14)

With this weight, we want to restrict ourselves to the subspace U+ ⊆U for which wu

is quasi-homogenisable. We define U+ to be the subset of ui j in U for which there

exists a positive integer wi j such that

χ = wi jχ0 + iχ1 + jχ2,

which is equivalent to

χ
wi j−1 = twi j−i

1 twi j− j
2 . (4.15)

We then define Wu to be the quasi-homogenisation of wu for each u ∈U+, and let

J+ ⊆ Jw be the subset corresponding to the ui j satisfying this condition. Unravelling

the definition, this means that (i, j) ∈ J+ (equivalently, ui j ∈U+) if and only if there

exists an integer wi j > 0 such that the monomial

ui jxiy jzwi j

has weight χ .

For a fixed u ∈U+, we set Ru := C[x,y,z]/(Wu). By an abuse of notation, we

will also denote the pullback of w to A3 by w. We have that Zu is defined as in (4.10),

each Zu is the compactification of

Vu :=
[(

SpecRu \ (000)
)/

ker χ0
]
, (4.16)

and the divisor at infinity Xu = Zu \Vu is isomorphic to X =
[(

SpecR0 \ (000)
)/

Γ
]

for

each u ∈U+. The condition d0 > 0 ensures that each Zu is a proper stack.
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These Wu fit together to form a family

W+ := w(x,y)+ ∑
(i, j)∈J+

ui jxiy jzwi j : A3×U+→ A1

such that Wu := W+|A3×{u}. Following [LU18], we can then define

Z :=
[(

W−1
+ (0)\

(
0×U+

))/
Γ
]
,

and this gives us a family

πZ : Y →U+

of stacks over U+ such that π
−1
Z (u) = Zu for each u ∈U+. Note that since each fibre

is the compactification of Vu by X , and Vu 'Vt·u for t ∈ C∗, we have that the fibres

above points in the same C∗-orbit of U+ are isomorphic. Furthermore, the relative

dualising sheaf of this family is Γ-equivariantly trivial, by construction, and since

d0 > 0, this trivialisation is unique up to scaling.

The map Ru→ Ru/(z)' R0 induces a pushforward functor

mf(A2,Γ,w)→mf(A3,Γ,Wu) (4.17)

obtained by considering the 2-periodic free resolution of an R0–module, and replac-

ing each free R0 module with the Ru–free resolution

0→ Ru(−~z)
z−→ Ru→ R0→ 0.

This is explained in detail, and in far greater generality, in [Ued14, Section 3].

For the quotient stack Zu, since the dualising sheaf of Zu is trivial for each
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u ∈U+, we have the Orlov equivalence

mf(A3,Γ,Wu)' Db Coh(Zu). (4.18)

The composition of (4.17) and Orlov equivalence gives the functor (4.11).

Unless explicitly stated, we will only consider maximally graded case on the

B–side for the rest of this section.

4.2.1 Unfoldings of loop polynomials

In the case of a two variable loop polynomial w = xpy+ yqx, we have µ = pq, and

(d1,d2;h) = (
q−1

d
,

p−1
d

;
pq−1

d
), (4.19)

where d := gcd(p−1,q−1). Without loss of generality, we can assume that p≥ q.

One has that

Jacw = span{1,x, . . . ,xp−1}⊗ span{1,y, . . . ,yq−1}, (4.20)

and

Γw =
{
(t1, t2) ∈ (C∗)2| t p

1 t2 = tq
2 t1
} ∼−→ C∗×µd

(t1, t2) 7→ (tn
1 tm

2 , t
p−1

d
1 t

− q−1
d

2 ),
(4.21)

where m,n is a fixed solution to

m(p−1)+n(q−1) = d. (4.22)

The image of the injective homomorphism

ϕ : C∗→ Γw

t 7→ (t
q−1

d , t
p−1

d )
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is an index d subgroup of Γw; however, we will only be interested in the maximal

symmetry group, i.e. Γ = Γw. A semi-universal unfolding is given by

w̃(x,y) = xpy+ yqx+ ∑
0≤i≤p−1
0≤ j≤q−1

ui jxiy j. (4.23)

By definition, U+ is the subspace of U containing elements such that there exists a

positive integer wi j such that

(t p
1 t2)wi j−1 = twi j−i

1 twi j− j
2 .

There are three possibilities for U+, and in each case follows by direct computation:

Case I: For q > 2 the only solution to this is i = j = wi j = 1, and so

U+ = SpecC[u1,1] = A1.

Case II: p > q = 2, we have i = j = wi j = 1, as well as j = 0, i = 1, and wi j = 2,

and so U+ = SpecC[u1,0,u1,1] = A2.

Case III: When p = q = 2, we have i = j = wi j = 1, j = 0, i = 1,

wi j = 2, j = 1, i = 0, wi j = 2, as well as i = j = 0, wi j = 3, and so U+ =

SpecC[u0,0,u1,0,u0,1,u1,1] = A4.

4.2.2 Unfoldings of chain polynomials

In the case of a two variable chain polynomial w = xpy+yq, we have µ = pq−q+1,

and

(d1,d2;h) = (
q−1

d
,

p
d

;
pq
d
), (4.24)

where d := gcd(p,q−1).

Remark 4.2.1. It should be stressed that this is the Milnor number on the B–side.

In the loop and Brieskorn–Pham cases the matrices defining the polynomials are
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symmetric, and the Milnor numbers of both sides will be the same, but this is not the

case for chain polynomials.

One has that

Jacw = span{1,x, . . . ,xp−2}⊗ span{1,y, . . . ,yq−1}⊕ span{xp−1}, (4.25)

and

Γw =
{
(t1, t2) ∈ (C∗)2| t p

1 t2 = tq
2
} ∼−→ C∗×µd

(t1, t2) 7→ (tn
1 tm

2 , t
p
d
1 t
− q−1

d
2 ),

(4.26)

where m,n is a fixed solution to

mp+n(q−1) = d. (4.27)

The image of the injective homomorphism

ϕ : C∗→ Γw

t 7→ (t
q−1

d , t
p
d )

is an index d subgroup of Γw, but again we will only be interested in the maximal

symmetry group. A semi-universal unfolding is given by

w̃(x,y) = xpy+ yq + ∑
0≤i≤p−2
0≤ j≤q−1

ui jxiy j +up−1,0xp−1. (4.28)

By definition, U+ is the subspace of U containing elements such that there exists a

positive integer wi j such that

(t p
1 t2)wi j−1 = twi j−i

1 twi j− j
2 .

For chain polynomials, there are five different cases of U+ to consider:
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Case I: When p,q > 2, the only solution is i = j = wi j = 1, and so

U+ = SpecC[u1,1] = A1.

Case II: In the case where p = 2, q > 2 the only solution is i = 0, j = 1, wi j = 2,

and so U+ = SpecC[u0,1] = A1.

Case III: In the case where q = 2, p > 3, we have i = j = wi j = 1, as well as

j = 0, i = 2, and wi j = 2, and so U+ = SpecC[u1,1,u2,0] = A2.

Case IV: When p = 3,q = 2, we have i = j = wi j = 1, j = 0, i = 2, wi j = 2,

and i = j = 0,wi j = 3, so U+ = SpecC[u0,0,u1,1,u2,0] = A3.

Case V: In the case when p = q = 2, we have j = 0, i = 1, wi j = 3, as well as i =

j = 0, wi j = 4, and i = 0, j = 1, and wi j = 2, and so U+ = SpecC[u0,0,u1,0,u0,1] =

A3.

4.2.3 Unfoldings of Brieskorn–Pham polynomials

In the case of a two variable Brieskorn–Pham polynomial w = xp + yq, we have

µ = (p−1)(q−1), and

(d1,d2;h) = (
q
d
,

p
d

;
pq
d
), (4.29)

where d := gcd(p,q). One has that

Jacw = span{1,x, . . . ,xp−2}⊗ span{1,y, . . . ,yq−2}, (4.30)

and

Γw =
{
(t1, t2) ∈ (C∗)2| t p

1 = tq
2
} ∼−→ C∗×µd

(t1, t2) 7→ (tn
1 tm

2 , t
p
d
1 t
− q

d
2 ),

(4.31)
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where m,n is a fixed solution to

mp+nq = d. (4.32)

The image of the injective homomorphism

ϕ : C∗→ Γw

t 7→ (t
q
d , t

p
d )

is an index d subgroup of Γw, but as in the loop and chain cases, we are only

interested in the maximal symmetry group. A semi-universal unfolding is given by

w̃(x,y) = xp + yq + ∑
0≤i≤p−2
0≤ j≤q−2

ui jxiy j. (4.33)

By definition, U+ is the subspace of U containing elements such that there exists a

positive integer wi j such that

(t p
1 )

wi j−1 = twi j−i
1 twi j− j

2 .

For Brieskorn–Pham polynomials, we have the following five cases:

Case I: In the case p ≥ q > 3, the only solution is i = j = wi j = 1, and so

U+ = SpecC[u1,1] = A1.

Case II: In the case where p = 3 and q = 2, we have i = 1, j = 0 and wi j = 4,

as well as i = j = 0 and wi j = 6, so U+ = SpecC[u0,0,u1,0] = A2.

Case III: In the case when p = q = 3, we have i = j = wi j = 1, as well as

i = j = 0, wi j = 3, and so U+ = SpecC[u0,0,u1,1] = A2.
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Case IV: In the case where p = 4, q = 2, we have j = 0, i = 2, wi j = 2, and

i = j = 0, wi j = 4. Therefore U+ = SpecC[u0,0,u2,0] = A2.

Case V: In the case where p > 4 and q = 2, we have i = wi j = 2 and j = 0, so

U+ = SpecC[u2,0] = A1.

4.3 Symplectic topology of the Milnor fibre
Let Σ be a smooth, compact, orientated surface of genus g > 0 with b > 0 connected

boundary components ∂Σ = tb
i=1∂iΣ. The surface to have in mind is the Milnor

fibre of an invertible polynomial, V̌ . Note that by an abuse of notation, we will not

distinguish between the Milnor fibre and its completion, since what we mean will be

clear from context.

4.3.1 Graded symplectomorphisms

In this subsection, we expand on the discussion of graded symplectic surfaces in

Section 3.3.7 with the goal of providing a self-contained summary of Lemma 4.3.3.

This provides criteria to ascertain when two graded symplectic surfaces are graded

symplectomorphic, in particular allowing us to identify when two Milnor fibres are

graded symplectomorphic. We will use this analysis to identify how the relevant

Milnor fibres can be glued from cylinders, and, later, also to establish Corollary 1.

As discussed in Section 3.3.7, for a 2n-dimensional symplectic manifold, (X ,ω),

there is a natural Lagrangian Grassmannian bundle LGr(T X)→ X , whose fibre at

x ∈ X is the Grassmannian of Lagrangian n−planes in TxX . We say (X ,ω) is Z-

gradable if it admits a lift to L̃Gr(T X), the fibrewise universal cover of the Lagrangian

Grassmannian bundle. This is possible if and only if 2c1(X) = 0 in H2(X), and this

implies that K⊗−2
X , the square of the anticanonical bundle, is trivial. If X is gradable,

then a grading is given by a choice of homotopy class of trivialisation of K⊗−2
X . For
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a trivialising section Θ ∈ Γ(X ,K⊗−2
X ), one has a map

αX : LGr(T X)→ S1

Lx 7→arg(Θ|Lx).

Given a compact, exact Lagrangian submanifold, L, this defines a section of

LGr(T X) by considering the tangent space to L at each point. We say that L is

gradable with respect to a grading on X if there exists a function α#
X : L→ R such

that exp(2πiα#
X(x)) = αX(TxL). This is possible if and only if the Maslov class of

L vanishes, where the Maslov class is defined by the homotopy class of the map

L→ LGr(T X)
αX−→ S1.

As explained in [Sei08b, Section 13(c)], on a (real) 2-dimensional surface,

Σ, gradings correspond to trivialisations of the real projectivised tangent bundle,

PR(T Σ)' LGr(T Σ). Recall that a line field is a section of PR(T Σ). Supposing that

a grading of Σ is chosen such that αΣ is as above, then one can define a line field on

the surface given by η = α
−1
Σ

(1). Conversely, a nowhere vanishing line field gives

rise to a map αΣ by recording the anticlockwise angle between the line field and

any other line in the tangent plane. In this way, line fields correspond naturally to

gradings on a surface, Σ.

Given a line field, η , which grades Σ, and a Lagrangian, L, represented by an

embedded curve γ : S1→ Σ, the map which corresponds to the Maslov class is given

by recording the anticlockwise angle from ηx to TxL at each point x ∈ L. The Maslov

class vanishes, and hence L is gradable with respect to η , if and only if the sections

γ∗η and γ∗T L are homotopic in γ∗PR(T Σ). A grading of L is a choice of homotopy

between them.

We denote the space of line fields by G(Σ) := π0(Γ(Σ,PR(T Σ))), and this has

the natural structure of a torsor over the group of homotopy classes of maps Σ→ S1,
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which we identify with H1(Σ). With this in mind, consider the trivial circle fibration

S1 ι−→ PR(T Σ)
p−→ Σ, (4.34)

which induces the exact sequence

0→ H1(Σ)
p∗−→ H1(PR(T Σ))

ι∗−→ H1(S1)→ 0. (4.35)

Note that the orientation of Σ induces an orientation on each tangent fibre, and

so the map ι is unique up to homotopy. For each line field, we can associate

an element [η ] ∈ H1(PR(T Σ)) by considering the Poincaré–Lefschetz dual of

[η(Σ)] ∈ H2(PR(T Σ),∂PR(T Σ)). These are precisely the elements such that

ι∗([η ])([S1]) = 1, and this is the content of [LP20, Lemma 1.1.2].

As already mentioned, for an embedded curve γ : S1→ Σ, there is a correspond-

ing section of the Lagrangian Grassmannian, γ̃ : S1→ PR(T Σ). This is given by

(γ, [T γ]), where [T γ] is the projectivisation of the tangent space to the curve γ .

Definition 4.3.1. Given a line field, η , on Σ, and an immersed curve γ : S1→ Σ, we

define the winding number of γ with respect to η as

wη(γ) := 〈[η ], [γ̃]〉, (4.36)

where 〈·, ·〉 : H1(PR(T Σ))×H1(PR(T Σ))→ Z is the natural pairing.

This pairing only depends on the homotopy class of η , as well as the regular

homotopy class of γ . Recall that, for the case of surfaces, the Maslov number of

a Lagrangian is precisely its winding number with respect to the line field used to

grade the surface. Therefore, a Lagrangian is gradable with respect to a line field

if and only if its winding number with respect to this line field vanishes. Since we

will be considering the Milnor fibre of a Lefschetz fibration, we must again consider

the grading on the Milnor fibre which is induced by the restriction of the unique

grading of C2 to Σ. This is crucial so that the functor (4.1) is graded, and therefore
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that (4.3) holds. As in Section 3.3.7, we have that the grading on the Milnor fibre is

given by a line field ` such that w`(Vi) = 0 for each vanishing cycle Vi. Since the

vanishing cycles form a basis of H1(Σ), the fact that the winding number around

each Lagrangian is zero implies that the homotopy class of ` is unique.

For any symplectomorphism ϕ : Σ1→ Σ2 and η2 ∈G(Σ2), one can consider the

line field on Σ1 given by

ϕ
∗(η2)(x) :=

[
(Txϕ)−1(η2 ◦ϕ(x))

]
for all x ∈ Σ1. (4.37)

If one has (Σ1;η1) and (Σ2;η2), where η1 and η2 are line fields used to grade the

surfaces Σ1 and Σ2, respectively, we say that a symplectomorphism ϕ : Σ1→ Σ2 is

graded if ϕ∗η2 is homotopic to η1. If one takes Σ1 =Σ2, then we define Symp(Σ;∂Σ)

to be the space of symplectomorphisms of Σ which fix ∂Σ pointwise. One can then

define the pure symplectic mapping class group of Σ as

M(Σ;∂Σ) := π0(Symp(Σ;∂Σ)), (4.38)

and observe that this group acts on G(Σ) as in (4.37). The decomposition of G(Σ)

into M(Σ;∂Σ)-orbits is given in [LP20, Theorem 1.2.4], and this allows one to

deduce [LP20, Corollary 1.2.6], which appears as Lemma 4.3.3, below. In what

follows, we briefly recall the relevant invariants, as well as techniques for their

computation, in order to be able to state, and later utilise, Lemma 4.3.3.

For a given line field η , consider

wη(∂iΣ), for i ∈ {1, . . . ,b},

the winding numbers around the boundary components. For two line fields to be ho-

motopic, it is necessary for the winding numbers around each boundary component

to agree, although this is definitely not sufficient. In particular, one can have two line
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fields which agree on the boundary, but which differ along interior non-separating

curves.

Recall that for a closed, orientated Riemann surface, Σ, a theorem of Atiyah

in [Ati71] proves the existence of a quadratic form ϕ : S(Σ)→ Z2, where S(Σ) is

the space of spin structures on Σ, ϕ does not depend on the complex structure of Σ,

and the associated bilinear form on H1(Σ,Z2) is the cup product. Note that S(Σ) is

a torsor over H1(Σ,Z2), and ϕ being a quadratic form on S(Σ) means that it is a

quadratic form on H1(Σ,Z2) for any choice of basepoint. Moreover, the associated

bilinear form doesn’t depend on the basepoint. He also proves that there are precisely

two orbits of the mapping class group of Σ on S(Σ), and these are distinguished

by the invariant ϕ , which is known as the Atiyah invariant. In [Joh80], Johnson

gives a topological interpretation of the Atiyah invariant by proving that it is the Arf

invariant of the corresponding quadratic form on H1(Σ,Z2).

The Arf invariant is well studied in topology, and we briefly recount some basic

facts about it, as well as some computation techniques. Let (V ,(−·−)) be a vector

space over Z2 with a non-degenerate bilinear form, and q : V → Z2 a quadratic form

satisfying

q(a+b) = q(a)+q(b)+(a ·b). (4.39)

It is well-known that the Gauß sum

GS(q) = ∑
x∈V

(−1)q(x) =±2
dimV

2 , (4.40)

and the sign is the Arf invariant of the quadratic form. I.e.

GS(q) = (−1)Arf(q)2
dimV

2 , (4.41)

Arf(q) ∈ Z2.
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To compute the Arf invariant, one can just compute the Gauß sum, although, ex-

cept in particularly nice circumstances, this can become computationally intractable

quite quickly. One can also find a base change to a symplectic basis where the for-

mula simplifies, although we will not do this. Instead, consider the basis {e1, . . . ,e2n}

of V , and the matrix defined by

fii =

2 if q(ei) = 1

0 if q(ei) = 0

fi j =

1 if ei · e j = 1

0 if ei · e j = 0

where i 6= j. Such a matrix defines an even quadratic form on a Z(2) module, V ,

whose mod 2 reduction gives the bilinear pairing on V . The precise module structure

of V is not important, since det f is well defined mod 8, and this value only depends

on q. One then has

Arf(q) =

0 if det f =±1 mod 8

1 if det f =±3 mod 8.

The standard reference for proof and further discussion of these facts is [HM06,

Chapter 9].

Returning to the case at hand, recall that a non-vanishing vector field induces

a spin structure on any compact Riemann surface with boundary. If the winding

number around each boundary component with respect to this vector field is 2 mod 4,

then this spin structure extends to the closed Riemann surface obtained by capping

off the boundary components with discs, Σ. Any vector field also yields a line field

by considering the projectivisation, and each embedded curve has an even winding

number with respect to this line field. Conversely, it is shown in [LP20, Lemma
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1.1.4] that if each embedded curve has even winding number with respect to a line

field, then this line field arises as the projectivisation of a vector field. In light

of this, in the case when two line fields have matching winding numbers around

boundary components, arise from the projectivisation of vector fields, and where

these vector fields define spin structures which extend to Σ, one must check that the

corresponding Atiyah invariants of these spin structures agree.

A useful fact is that, by the Poincaré–Hopf index theorem, (see, for example,

[Hop83, Chapter 3]) for any compact S⊆ Σ, we have

b

∑
i

wη(∂i(S)) = 2χ(S), (4.42)

where χ(S) is the Euler characteristic. It is therefore clear that the winding number

does not descend to a homomorphism from H1(Σ). What is true, however, is that

one can consider for each line field η the following homomorphism, given by the

mod 2 reduction of the winding number:

[wη ]
(2) : H1(Σ,Z2)→ Z2.

From this, we can define the following invariant.

Definition 4.3.2. We define the Z2-valued invariant

σ : G(Σ)→ Z2

η 7→

0 if [wη ]
(2) = 0

1 otherwise.

In the case when σ(η) = 0, and so η is the projectivisation of a vector field,

v, we need to check when the spin structure on Σ defined by v extends to a spin

structure on Σ, and if it does, calculate the corresponding Atiyah invariant.

For a line field (not necessarily coming from the projectivisation of a vector
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field), η , the existence of a quadratic form

qη : H1(Σ,Z4)→ Z4

defined by

qη

( m

∑
i=1

αi
)
=

m

∑
i=1

wη(αi)+2m ∈ Z4,

where αi are simple closed curves, and whose associated bilinear form is twice the

intersection pairing on H1(Σ,Z4) is established in [LP20, Proposition 1.2.2]. It is

proven in [LP20, Lemma 1.2.3] that for g(Σ) ≥ 2, two line fields, η , θ , lie in the

sameM(Σ;∂Σ)-orbit if the winding numbers agree on each boundary component,

and qη = qθ . In the case when η and θ come from the projectivisation of vector

fields, but the corresponding spin structures do not extend to Σ, or when the two line

fields do not arise as the projectivisation of vector fields, it is enough to show that

σ(η) = σ(θ), and that the winding numbers on the boundary components agree. In

the case where η and θ are line fields such that σ(η) = σ(θ) = 0, and

wη(∂i(Σ)) = wθ (∂i(Σ)) ∈ 2+4Z for each i ∈ {1, . . . ,b}, (4.43)

we must compare the corresponding Atiyah invariants.

Recall that the inclusion ∂Σ
ι−→ Σ induces a map

ι∗ : Zb
2 ' H1(∂Σ,Z2)→ H1(Σ,Z2)' Z2g+b−1

2 . (4.44)

The kernel of the intersection pairing on H1(Σ,Z2) is spanned by the image of i∗, and

the cokernel is naturally identified with H1(Σ,Z2), where Σ is as above. The intersec-

tion form on H1(Σ,Z2) descends to a non-degenerate intersection form on H1(Σ,Z2).
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By the fact that σ(η) = σ(θ) = 0, we have that the function

q/2 : H1(Σ,Z2)→ Z2 (4.45)

is well defined, where q is either qη or qθ . By (4.43), we have that q/2(∂iΣ)≡ 0 mod

2 for each i ∈ {1, . . . ,b}. Since the kernel of the intersection pairing on H1(Σ,Z2) is

spanned by the boundary curves, q/2 descends to a non-singular quadratic form

q : H1(Σ,Z2)→ Z2

such that

q(α +β ) = q(α)+q(β )+(α ·β ), (4.46)

and Arf(q) gives the last invariant required to ascertain whether two line fields are in

the sameM(Σ;∂Σ)–orbit in the case where g(Σ)≥ 2. In the case when g = 1, we

define

Ã(η) := gcd{wη(α),wη(β ),wη(∂1Σ)+2, . . . ,wη(∂bΣ)+2}, (4.47)

where α and β are non-separating curves which project to a basis of

H1(Σ,Z2)/im(i∗).

Putting this all together, [LP20, Theorem 1.2.4] gives criteria for two line fields

to be in the same mapping class group orbit. Using this, the authors give criteria for

there to exist a graded symplectomorphism between two different surfaces.

Lemma 4.3.3 ([LP20, Corollary 1.2.6]). Let (Σ1;η1) and (Σ2;η2) be two graded

surfaces, each of genus g with b boundary components. There exists a symplecto-

morphism ϕ : Σ1→ Σ2 such that ϕ∗(η2) is homotopic to η1 if and only if

wη1(∂iΣ1) = wη2(∂iΣ2),
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for each i ∈ {1, . . . ,b}, and

• If g = 1, then Ã(η1) = Ã(η2);

• If g ≥ 2, then σ(η1) = σ(η2) and, if the Arf invariant is defined, then

Arf(qη1
) = Arf(qη2

).

4.3.2 Gluing cylinders

In this subsection, we describe a general construction of graded surfaces by gluing

cylinders. This allows us to reduce the computation of topological invariants of

these surfaces to the combinatorics of how they are glued. We then provide explicit

descriptions of the Milnor fibres of invertible polynomials in two variables, as well

as the corresponding computations of the topological invariants.

Let A(`,r;d) denote d disjoint cylinders placed in a column, each with r marked

points (stops) on the right boundary component, and ` marked points on the left.

Considering each cylinder as a rectangle with top and bottom identified, for each

k ∈ {0, . . . ,d−1}, counting top-to-bottom in the column, we label the marked points

on the right (resp. left) boundary component of the kth cylinder as p+rk, . . . , p+r(k+1)−1

(resp. p−`k, . . . , p−
`(k+1)−1). The reasoning for the labelling is that we would like to

keep track of where the marked points are on each individual cylinder, as well as

where each marked point is on the right (resp. left) side of the column of cylinders

with respect to the total ordering p+0 , . . . , p+diri−1 (resp. p−0 , . . . , p−di`i−1).

In this thesis, we will consider both circular and linear gluing. In the case of

circular gluing, a surface is determined by a collection of cylinders,

A(`1,r1;d1),A(`2,r2;d2), . . . ,A(`n,rn;dn),

such that ridi = `i+1di+1, where i is counted mod n, and corresponding permutations

σi ∈Sdiri . For each i ∈ {1, . . .n} and j ∈ {0, . . . ,diri−1}, we glue a small segment

of the boundary component p+j in A(`i,ri;di) to p−
σi( j) in A(`i+1,ri+1;di+1) (counting
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i mod n) by attaching a strip. See Figure 4.1 for an example. The case of linear

gluing is completely analogous, although we no longer count i modulo n, and so do

not glue A(`n,rn;dn) to A(`1,r1;d1). We no longer require rndn = `1d1 in this case,

and refer to the left boundary components of A(`1,r1;d1) and the right boundary

components of A(`n,rn;dn) as the distinguished boundary components.

Figure 4.1: A genus 5 surface with 4 boundary components constructed by gluing A(2,4;2)
to A(4,2;2) via the permutations σ1 =

(
0 1 2 3 4 5 6 7
0 2 4 6 1 3 5 7

)
and σ2 =

(
0 1 2 3
2 0 3 1

)
.

For each i∈ {1, . . . ,n}, the number of boundary components arising from gluing

the ith and (i+1)st columns can be computed as follows. Consider the permutations

τri =
(
0,ri−1, . . . ,1

)(
ri,2ri−1, . . . ,ri +1

)
. . .(
(di−1)ri,diri−1, . . . ,(di−1)ri +1

)
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and

τ`i =
(
0,1, . . . , `i+1−1

)(
`i+1, . . . ,2`i+1−1

)
. . .
(
(di+1−1)`i+1, . . . ,di+1`i+1−1

)
.

The number of boundary components between the ith and (i+ 1)st columns will

then be given by the number of cycles in the decomposition of σ
−1
i τ`i+1σiτri ∈Sdiri .

Note that if di = di+1, then we simply get the commutator.

To compute the homology groups of Σ, one can construct a ribbon graph

Γ(`1, . . . , `n;r1, . . . ,rn;d1, . . . ,dn;σ1, . . . ,σn)⊆ Σ, (4.48)

onto which the surface deformation retracts. To do this, let there be a topological

disc D2 for each of the cylinders. For each disc, attach a strip which has one end on

the top, and the other end on the bottom. Then, attach a strip which connects two

discs if there is a strip which connects the corresponding cylinders. These strips

must be attached in such a way as to respect the cyclic ordering given by the gluing

permutation. One can then deformation retract this onto a ribbon graph whose cyclic

ordering at the nodes is induced from the ordering of the strips on each cylinder. If

there is no ambiguity, we will refer to this graph as Γ(Σ).

Since the embedding of Γ(Σ) into Σ induces an isomorphism on homology, the

homology groups of Σ can be easily computed. Namely, since the graph is connected,

we have H0(Σ) = Z. Since χ(Σ) =V −E = rkH0(Σ)− rkH1(Σ), which, in the case

of circular gluing, yields χ(Σ) =−∑
n
i=1 ridi, we have H1(Σ) = Z(1−χ). The case of

linear gluing is analogous. A basis for the first homology of the graph is given by an

integral cycle basis, and so the basis of the first homology for Σ is given by loops

which retract onto these cycles.

Although there is no natural choice of grading on a surface glued in this way, in

what follows we will only consider the case where the line field used to grade the
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surface is horizontal on each cylinder and parallel to the boundary components on

attaching strips.

4.3.2.1 Loop Polynomials

In the case of loop polynomials w̌ = x̌py̌+ y̌qx̌, we have that n = 3 in the above

construction, and we glue the cylinders

A(p−1,1;q−1),A(q−1, p−1;1),A(1,q−1; p−1),

where σ1 and σ2 are the identity elements in Sq−1 and Sp−1, respectively, and

σ3 ∈S(p−1)(q−1) is given by

(q−1)k3 + i 7→ (p−1)
(
(−i) mod q−1

)
+(p−2− k3), (4.49)

where in this case i ∈ {0, . . . ,q− 2} and k3 ∈ {0, . . . , p− 2}. Call the resulting

surface Σloop(p,q).

For the basis of homology, we begin by considering the compact curves in each

cylinder, γi. Together with these curves, we construct the basis for the first homology

of the surface as follows. On each of the cylinders in the left and right columns, we

take the curves to be approximately horizontal. We must therefore only describe

the behaviour of the curves in the middle cylinder. Consider the curve which goes

from the ((p−1)k1 + j)th position on the left hand boundary to the ((q−1)k3 + i)th

position on the right hand boundary. In accordance with the construction of Chapter

3.3, this curve must wind 2π

(
k3

p−1 +
−k1 mod q−1

q−1

)
degrees in the cylinder. This

winding goes in the downwards direction, since we are thinking of the argument

of the x̌ coordinate increasing in this direction. These curves form a basis of the

first homology, since they retract onto a basis for the graph, Γ(Σloop(p,q)). The line

field, `, used to grade the surface is approximately horizontal on each cylinder, and

approximately parallel to the boundary on the connecting strips. By construction, we

have σ(`) = 0. See Figure 4.2 for the case of w̌ = x̌4y̌+ x̌y̌3.

There is only one boundary component between the first and second columns,
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Figure 4.2: Milnor fibre for w̌ = x̌4y̌+ x̌y̌3. Top and bottom of each cylinder are identified.
Comparing with the basis of Lagrangians in Section 3.3, the red curve corresponds to Vx̌y̌,
the purple ones to iVx̌w̌, the blue ones to iVy̌w̌, and the green ones to l,mV0.

as well as the second and third. With the line field ` given above, these components

have winding numbers −2(q− 1) and −2(p− 1), respectively. To calculate the

number of boundary components arising from gluing the third and first columns,

note that in this case τr3 can be written as

(q−1)k3 + i 7→ (q−1)k3 +
(
(i−1) mod (q−1)

)
, (4.50)

and τ`1 can be written as

(p−1)k1 + j 7→ (p−1)k1 +
(
( j+1) mod (p−1)

)
. (4.51)

With this description, one can see that σ
−1
3 τ`1σ3τr3 ∈S(p−1)(q−1) is given by

(q−1)k3 + i 7→ (q−1)
(
k3−1) mod p−1

)
+
(
(i−1) mod q−1

)
. (4.52)
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As such, the length of a cycle is the least common multiple of (p−1) and (q−1),

which is (p−1)(q−1)
gcd(p−1,q−1) . There are therefore gcd(p− 1,q− 1) boundary compo-

nents coming from gluing the third column to the first, each of winding number

−2 (p−1)(q−1)
gcd(p−1,q−1) . We can then compute the genus from (4.42), which yields

−2(p−1)−2(q−2)−2(p−1)(q−1) = 2(2−2gloop−gcd(p−1,q−1)−2),

and so the genus is

gloop =
1
2
(pq−1−gcd(p−1,q−1)),

which is in agreement with the calculation in Section 3.3.2.

By construction, the surface Σloop(p,q) is graded symplectomorphic to the

Milnor fibre of the polynomial w̌ = x̌py̌+ x̌y̌q. To see this, consider the ribbon graph

which corresponds to the orientable surface V̌ . To construct this graph, first consider

a disc D2 for each of the neck regions of the construction of the Milnor fibre in

Section 3.3.1. Then, attach a thin strip which connects two discs if there is at least

one vanishing cycle which goes between them. The cyclic ordering of the strips at

each disc is determined by the ordering of the vanishing cycles passing through a

corresponding neck region. This graph can then be embedded into V̌ in such a way

that all intersections occur on the interior of the discs, and away from the discs, the

vanishing cycles are on the interior of the attaching strips. One can deformation

retract this onto a graph with the induced cyclic ordering at the vertices. Call this

graph Γ(V̌ ), and observe that it is on-the-nose the same as Γ(Σloop(p,q)), and so the

corresponding surfaces with boundary are symplectomorphic. See Figure 4.3 for an

example of p = 4, q = 3.

To see that the two surfaces are graded symplectomorphic, consider the corre-

sponding fat graphs in both cases. In this situation one can see that the description of

the line field used to grade Σloop(p,q) agrees with the description of the line field

used to grade V̌ , as in Section 3.3.7, and this shows that the surfaces are graded
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Figure 4.3: Ribbon graph for Γ(V̌ ) = Γ(Σloop(4,3)), where the cyclic ordering of the half-
edges at the nodes is in the anticlockwise direction.

symplectomorphic.

4.3.2.2 Chain polynomials

In the case of chain polynomials, we have w̌ = x̌p + x̌y̌q, and we will show that the

Milnor fibre can be constructed by gluing

A(p−1,1;q−1),A(q−1,(p−1)(q−1);1),

where σ1 is the identity element in Sq−1, and σ2 ∈S(p−1)(q−1) is given by

i 7→ (p−1)(−i mod q−1)+ p−2−
⌊ i

q−1
⌋
, (4.53)

where in this case i ∈ {0, . . . ,(p− 1)(q− 1)− 1}. Call the resulting surface

Σchain(p,q).

For the basis of homology, we begin by including the compact curves in each

cylinder, γi. Together with these curves, we construct a basis for homology as

follows. On the cylinders in the first column, we take the curves to be approxi-

mately horizontal. In the cylinder in the second column, the curve going from the

((p−1)k2 + j)th position on the left hand side to the ith position on the right hand
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side winds 2π

(
−k1 mod p−1

p−1 + i
(p−1)(q−1)

)
degrees, again in the downwards direction.

This is in accordance with the description of the curves as in Section 3.5. Together,

these curves form a basis for the first homology, since they retract onto a basis

of the corresponding ribbon graph, Γ(Σchain(p,q)). As in the loop case, the line

field, `, used to grade the surface is approximately horizontal on each cylinder, and

approximately parallel to the boundary on the connecting strips. By construction, we

have σ(`) = 0.

There is only one boundary component which arises from gluing the first

and second columns, and the winding number around this boundary component is

−2(q− 1). To compute the number of boundary components, and their winding

numbers, arising from gluing the second column to the first, observe that in this

case, τr2 is just the permutation j 7→ j−1, and τ`1 is of the same form as (4.51). The

permutation σ
−1
2 τ`1σ2τr2 ∈S(p−1)(q−1) is given by

i 7→ i−q. (4.54)

Therefore the length of a cycle in the above permutation is κ = (p−1)(q−1)
gcd(p−1,q) . From this,

we see that there are gcd(p−1,q) boundary components arising from this gluing,

and each boundary component has winding number −2 (p−1)(q−1)
gcd(p−1,q) . Therefore there

are 1+gcd(p−1,q) boundary components in total, and we conclude from (4.42)

that

gchain =
1
2
(pq− p+1−gcd(p−1,q)),

which is in agreement with the calculation in Section 3.5.2.

As in the loop case, we claim that the surface constructed above is graded

symplectomorphic to V̌ . To see this, we can construct a ribbon graph corresponding

to V̌ as in the case of loop polynomials. This graph also matches Γ(Σchain(p,q))

on-the-nose, and this establishes that Σchain(p,q) and V̌ are symplectomorphic. To
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see that they are graded symplectomorphic, observe that in the corresponding fat

graphs, the description of the line field above agrees with the description as in Section

3.5.3, and this shows that the surfaces are graded symplectomorphic.

4.3.2.3 Brieskorn–Pham polynomials

In the case of Brieskorn–Pham polynomials, we have w̌ = x̌p + y̌q, where (p,q) 6=

(2,2). Consider the surface obtained by gluing one cylinder to itself with the

permutation σ ∈S(p−1)(q−1)−1, which is given by

i 7→ −i(q−1), (4.55)

where in this case i is a point on the right boundary, and is considered as an element

of {0, . . . ,(p−1)(q−1)−2}. Call this surface ΣBP(p,q).

For the basis of homology, we take a compact curve in the cylinder, γ1, as well

as one curve which is approximately parallel to the boundary along each of the

connecting strips. On the interior of the cylinder, we have that the curve beginning in

the jth position on the left hand side and ending at the ith position on the right hand

side must wind 2π

(
i+(− j) mod [(p−1)(q−1)−1]

(p−1)(q−1)−1

)
degrees in the downwards direction,

in accordance with the description of the curves in Section 3.6.2. Together, these

curves form a basis for the first homology of ΣBP(p,q), since they retract onto a

basis of the corresponding ribbon graph, Γ(ΣBP(p,q)). As in the previous two cases,

the line field, `, used to grade the surface is approximately horizontal on the cylinder,

and approximately parallel to the boundary on the connecting strips. Again, by

construction, we have σ(`) = 0.

Let τ be the permutation i 7→ i−1, so the number of boundary components is

given by the number of cycles in the decomposition [σ ,τ] ∈ S(p−1)(q−1)−1. The

commutator is given by

i 7→ i− p,
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and so the length of a cycle is given by (p−1)(q−1)−1
gcd(p,q) . There are therefore gcd(p,q)

boundary components arising from this gluing, and each has winding number

−2 (p−1)(q−1)−1
gcd(p,q) . Therefore, we have

gBP =
1
2
((p−1)(q−1)+1−gcd(p,q)),

in agreement with the genus calculated in Section 3.6.2.

As in the previous cases, we deduce that that ΣBP(p,q) is graded symplecto-

morphic to the Milnor fibre.

4.3.3 Symplectic cohomology of the Milnor fibre

In this subsection, we utilise the explicit descriptions of the Milnor fibres of invertible

polynomials given above to calculate the module structure of symplectic cohomology

of these surfaces. By combining this with Theorem 4.3.4 below, we will be able to

deduce the correct mirror curves in the proof of Theorem 4.1.1.

The symplectic cohomology of surfaces admits a particularly simple description

– namely, for any Riemann surface, Σg,b, of genus g > 0 with b > 0 boundary

components, we have

SH•(Σg,b)' H•(Σg,b)⊕
b⊕

i=1

(⊕
k≥1

H•(S1)[k ·wη(∂iΣg,b)]

)
, (4.56)

where wη(∂iΣg,b) is the winding number of the line field η about the boundary

component ∂iΣg,b. This was first described in the case of one puncture in [Sei08a,

Example 3.3], and the generalisation to more than one puncture follows by the same

argument. Note that the grading convention in [Sei08a] is shifted by one from ours.

In the case of loop polynomials, w̌ = x̌py̌+ y̌qx̌, we saw in Section 4.3.2.1

that the Milnor fibre is a 2+ gcd(p− 1,q− 1)-times punctured surface of genus

gloop =
1
2(pq−1−gcd(p−1,q−1)). Consider Σg,b = V̌ , and let ` be the line field
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used to grade the surface as in Section 4.3.2.1. We then have by (4.56) and the

analysis in Section 4.3.2.1, that

SH0(V̌ )' C

SH1(V̌ )' C⊕pq

SH2n(p−1)(V̌ )' SH2n(p−1)+1(V̌ )' C for n ∈ Z>0 such that
q−1

gcd(p−1,q−1)
- n

SH2n(q−1)(V̌ )' SH2n(q−1)+1(V̌ )' C for n ∈ Z>0 such that
p−1

gcd(p−1,q−1)
- n

SH2n (p−1)(q−1)
gcd(p−1,q−1) (V̌ )' SH2n (p−1)(q−1)

gcd(p−1,q−1)+1
(V̌ )' C⊕(2+gcd(p−1,q−1)) for n ∈ Z>0.

In the case of chain polynomials, w̌ = x̌p + x̌y̌q, we have that the Milnor fibre

is a (1+gcd(p−1,q))−times punctured surface of genus gchain =
1
2(pq− p+1−

gcd(p−1,q)). Let ` be the line field used to grade the surface, as in Section 4.3.2.2.

We then have by (4.56) and the analysis in Section 4.3.2.2 that

SH0(V̌ )' C

SH1(V̌ )' C⊕pq−p+1

SH2n(q−1)(V̌ )' SH2n(q−1)+1(V̌ )' C for n ∈ Z>0 such that
p−1

gcd(p−1,q)
- n

SH2n (p−1)(q−1)
gcd(p−1,q) (V̌ )' SH2n (p−1)(q−1)

gcd(p−1,q) +1
(V̌ )' C⊕(1+gcd(p−1,q)) for n ∈ Z>0.

In the case of Brieskorn–Pham polynomials, we have that the Milnor fibre is a

gcd(p,q)-times punctured surface of genus gBP = 1
2((p−1)(q−1)+1−gcd(p,q)).

Let ` be the line field used to grade the surface, as in Section 4.3.2.3. Then, by (4.56)

and the analysis in Section 4.3.2.3, we have

SH0(V̌ )' C

SH1(V̌ )' C⊕(p−1)(q−1)

SH2n (p−1)(q−1)−1
gcd(p,q) (V̌ )' SH2n (p−1)(q−1)−1

gcd(p,q) +1
(V̌ )' C⊕gcd(p,q) for n ∈ Z>0.

As previously mentioned, the comparison of the symplectic cohomology of the
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Milnor fibre and the Hochschild cohomology of the Fukaya category of the Milnor

fibre will be crucial in our mirror symmetry argument. To this end, we have the

following theorem of Lekili and Ueda:

Theorem 4.3.4 ([LU18, Corollary 6.6]). Let w̌ be the transpose of an invertible

polynomial in two variables such that ď0 > 0. Then

SH•(V̌ )' HH•(F(V̌ )).

Note that assuming ď0 > 0 is crucial, as can be seen if one considers w̌ = x̌2+ y̌2.

4.3.4 Graded symplectomorphisms between Milnor fibres

It is a natural question to ask which Milnor fibres are graded symplectomorphic, and

in this subsection we utilise Lemma 4.3.3 to determine this. Since the genera, number

of boundary components, and winding numbers around boundary components of the

Milnor fibres were calculated above, it is easy to check when these match. This gives

the potential graded symplectomorphisms, although one must also check that the

corresponding Arf invariants agree whenever they are defined. We use the method

described in Section 4.3.1 to compute the Arf invariant when necessary.

Observe that for each q≥ 2 and n≥ 1, we have that w̌loop = x̌(q−1)n+1y̌+ y̌qx̌,

and w̌chain = x̌qn+1 + y̌qx̌ have the same genus, number of boundary components,

and winding numbers along each boundary component. In the case of q odd, this

is enough to give a graded symplectomorphism by Lemma 4.3.3, since σ = 0 in

both cases, and −2(q− 1) ≡ 0 mod 4. In the case where q and n are both even,

we again have that the Milnor fibres are graded symplectomorphic. In the case

where q is even and n is odd, it remains to check that the relevant Arf invariants agree.

For a graded symplectomorphism between the Milnor fibres of a chain and

Brieskorn–Pham polynomial, we have that w̌′chain = x̌p+ y̌n(p−1)x̌ and w̌BP = x̌p+ y̌np

for each p ≥ 2 and n ≥ 1 or n ≥ p = 2 have the same genus, number of boundary

components, and winding numbers along each boundary component. In the case



154 Chapter 4. HMS for Milnor fibres of invertible curve singularities

where n is even and p is odd, we have that −2(n(p− 1)− 1) ≡ 0 mod 4, and so

Lemma 4.3.3 gives us a graded symplectomorphism between the Milnor fibres.

Similarly, for p = 2 and n odd, Lemma 4.3.3 yields a graded symplectomorphism

between Milnor fibres. In all other cases, we must check the relevant Arf invariants.

The only possibility for a graded symplectomorphism between the Milnor fibres

of a loop and Brieskorn–Pham polynomial is that both are symplectomorphic to a

Milnor fibre of a chain polynomial. For such a graded symplectomorphism to exist,

we require w̌loop = x̌qy̌+ y̌qx̌, w̌chain = x̌q+1+ y̌qx̌, and w̌BP = x̌q+1+ y̌q+1. It should

be noted that the potential graded symplectomorphisms discussed above are the only

such possibilities.

4.3.4.1 Graded symplectomorphisms between the Milnor fibres of

loop and chain polynomials

In the case of loop polynomials of the form w̌loop = x̌(q−1)n+1y̌+ y̌qx̌, we have

that there are q+ 1 boundary components. Recall the basis of vanishing cycles

for the first homology of the Milnor fibre given in Section 3.3. An elementary

calculation shows that if we remove the Lagrangian V loop
x̌y̌ , as well as the Lagrangians

{iV loop
x̌w̌ }i∈{0,...,q−2}, then the restriction of the intersection form is non-degenerate.

In the case of chain polynomials of the form w̌chain = x̌qn+1 + y̌qx̌, we consider

the basis of Lagrangians for the first homology group of the Milnor fibre as given

in Section 3.5. By removing the Lagrangian V chain
x̌y̌ , as well as the Lagrangians

{iV chain
x̌w̌ }i∈{0,...,q−2}, the restriction of the intersection form to the remaining La-

grangians is non-degenerate.

Let Un be the n× n matrix given by (Un)i, j =

1 if i≥ j

0 otherwise
. Then we

have that fchain =Uq−1⊗Uqn +(Uq−1⊗Uqn)
T . On the other hand, floop is the block
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matrix given by


2Idn(q−1) Idn(q−1) . . . Idn(q−1)

Idn(q−1)
... Uq−1⊗Un(q−1)+(Uq−1⊗Un(q−1))

T

Idn(q−1)


In both cases, one can explicitly compute that the determinant is nq+ 1, and so,

in particular, we have Arf(qchain) = Arf(qloop). Therefore, by Lemma 4.3.3, the

surfaces are graded symplectomorphic, and their respective Fukaya categories are

quasi-equivalent.

4.3.4.2 Graded symplectomorphisms between the Milnor fibres of

chain and Brieskorn–Pham polynomials

In the case of chain polynomials of the form w̌′chain = x̌p + y̌n(p−1)x̌, and Brieskorn–

Pham polynomials of the form w̌BP = x̌p+ y̌np, we have that the there are p boundary

components. In the chain case, we remove V chain
x̌y̌ , as well as the Lagrangians

{iV chain
x̌w̌ }i∈{0,...,p−3} from the collection of Lagrangians which form a basis of the

first homology of the Milnor fibre, and the restriction of the intersection form to the

remaining Lagrangians is non-degenerate. In the Brieskorn–Pham case, if we remove

the Lagrangians {l,np−2V BP
0 }l∈{0,...,p−2} from the collection of Lagrangians which

form a basis of the first homology group of the Milnor fibre, as described in Section

3.6.2, then the restriction of the intersection form to the remaining Lagrangians is

likewise non-degenerate.

In the case of chain polynomials, we have that fchain′ is given by removing the
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top and left p−2 rows and columns from


2Idn(p−1)−1 Idn(p−1)−1 . . . Idn(p−1)−1

Idn(p−1)−1
... Up−1⊗Un(p−1)−1 +(Up−1⊗Un(p−1)−1)

T

Idn(p−1)−1


In the case of Brieskorn–Pham polynomials, we have that fBP = Up−1⊗Unp−2 +

(Up−1⊗Unp−2)
T .

In both cases, we have that

det fchain′ = det fBP =

p if p is odd

np−1 if p is even.

We therefore have by Lemma 4.3.3 that the Milnor fibres are graded symplectomor-

phic.

4.4 Hochschild cohomology via matrix factorisations
In this section, we make the necessary Hochschild cohomology computations

which will later enable us to deduce the existence of an affine scheme of finite type

which represents the moduli functor of A∞-structures on the graded algebras we are

interested in. Moreover, we will combine these computations with Theorem 4.3.4 to

exclude candidate mirrors. This is the main computational component of the chapter,

and we include the entire calculation for completeness, although a computation of

HHn(Z) for n≤ 2 would have sufficed.

Suppose once more that we are in the setting of Section 4.2, and we have that

w is an invertible polynomial in two variables such that d0 > 0, Γ is an admissible

subgroup of Γw, and Wu the quasi-homogenisation of a semi-universal unfolding

corresponding to u ∈ U+. Denote V = {x,y,z}, S := SymV = C[x,y,z], and so
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Ru = S/(Wu), and Wu ∈ (S⊗ χ)Γ (recall χ = χw|Γ). Equation (4.18), combined

with the above observation, implies that

HH•(Zu)' HH•(A3,Γ,Wu). (4.57)

This vastly simplifies the calculation at hand, since a theorem of Ballard, Favero,

and Katzarkov ([BFK11, Theorem 1.2]) reduces the computation of the Hochschild

cohomology of the category of Γ–equivariant matrix factorisations of Wu to studying

the cohomology of certain Koszul complexes, which in nice cases reduces to studying

the Jacobi algebra of Wu. To this end, consider an element γ ∈ ker χ , and Vγ the

subspace of V of γ-invariant elements. Let Sγ := SymVγ , and Nγ the complement of

Vγ in V , so that V 'Vγ ⊕Nγ as a Γ-module. Denote by Wγ the restriction of Wu to

SpecSγ , and consider the Koszul complex

C•(dWγ) := {· · · → ∧2V∨γ ⊗χ
⊗(−2)⊗Sγ →V∨γ ⊗χ

∨⊗Sγ → Sγ}, (4.58)

where Sγ sits in cohomological degree 0, and the differential is the contraction with

dWγ ∈
(
Vγ ⊗χ⊗Sγ

)Γ
. (4.59)

Denote by Hi(dWγ) the ith cohomology group of the Koszul complex. The zeroth

cohomology of (4.58) is isomorphic to the Jacobi algebra of Wγ , and if Wγ has an

isolated critical point at the origin, then C•(dWγ) is a resolution. Our main tool for

computing Hochschild cohomology is the following theorem:

Theorem 4.4.1 ([BFK11]). Let w be an invertible polynomial in two variables, Γ an

admissible subgroup of Γw which acts on A3 = SpecS, and Wu ∈ S be a non-zero

element of degree χ . Assume that the singular locus of the zero set Z(−Wu)�Wu of

the Thom–Sebastiani sum −Wu�Wu is contained in the product of the zero sets
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ZWu×ZWu . Then HHt(A3,Γ,Wu) is isomorphic to

( ⊕
γ∈ker χ, l≥0
t−dimNγ=2u

H−2l(dWγ)⊗χ
⊗(u+l)⊗∧dimNγ N∨γ

⊕
⊕

γ∈ker χ, l≥0
t−dimNγ=2u+1

H−2l−1(dWγ)⊗χ
⊗(u+l+1)⊗∧dimNγ N∨γ

)Γ

.

(4.60)

In the case where the Γ-action on V satisfies dim(S⊗ρ)Γ < ∞ for any ρ ∈ Γ̂,

one then has

dimHHt(A3,Γ,W)< ∞ (4.61)

for every t ∈ Z. To see this, note that the complex C•(dWγ) is always bounded,

and the group ker χ is finite. Therefore, each direct summand of (4.60) is finite

dimensional, and there are only finitely many u contributing to a fixed t.

Theorem 4.4.1 is a minor modification of [BFK11, Theorem 1.2], where the

difference is in the convention for the Koszul complex. In our case, when there

is an additional C∗-action on V , then (4.60) is equivariant with respect to it. In

particular, in the case of u = 0 ∈U+, we have that there is an additional C∗-action

on V given by t · (x,y,z) = (x,y, tz), and this induces an additional C∗-action on

HH•(Z0). Denote by HH•(Z0)<0 the negative weight part of this action. We refer

the reader to [BFK11] for a proof of Theorem 4.4.1.

Definition 4.4.2. We will say that the pair (w,Γ) is untwisted if HH2(Z0)<0 comes

only from the summand (Jacw⊗C[z]⊗χ)Γ corresponding to u = 1 and γ = 1∈ ker χ

in (4.60).

It should be emphasised that being (un)twisted is a property of a pair (w,Γ),

rather than its category of matrix factorisations. Indeed, we will see below that the

polynomial w = x3y+y2 is twisted and w = x2y+y2x is not, although by combining
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Corollary 1 and the discussion above, we see that the Hochschild cohomology of

their respective categories of matrix factorisations are isomorphic. A pair (w,Γ)

being untwisted ensures that all of the deformations corresponding to HH2(Z0)<0

come from semi-universal unfoldings of the polynomial w. This is a key step in the

proof of [LU18, Theorem 1.6], a special case of which appears as Theorem 4.6.1.

By an abuse of notation, we will refer to a polynomial w as being (un)twisted to

mean that the pair (w,Γw) is (un)twisted.

4.4.1 Loop polynomials

Consider W0 = xpy+ yqx with the only restriction that p,q ≥ 2. Without loss of

generality, we can consider p ≥ q. This has weights as in (4.19), where we again

set d := gcd(p− 1,q− 1). As explained in Section 4.2, we extend the action of

Γw ' C∗×µd to A3 as in (4.14) so that we now have

Γw = {(t0, t1, t2) ∈ (C∗)3| t p
1 t2 = tq

2 t1 = t0t1t2}. (4.62)

The group of characters is given by

Γ̂w := Hom(Γw,C∗)' Z⊕Zd, (4.63)

and we take m,n to be the same fixed solution to (4.22) as in Section 4.2.1. We

write each character (t0, t1, t2) 7→ t
mi− (q−1) j

d
2 t

ni+ (p−1) j
d

1 , where (i, j) ∈ Z⊕Zd , as ρi, j.

One has that span{z∨} ' ρ (p−1)(q−1)
d ,0

, span{x∨} ' ρ (q−1)
d ,m

, span{y∨} ' ρ (p−1)
d ,−n

,

χ ' ρ pq−1
d ,m−n, and ker χ ' µpq−1.

We have that Jacw is given as in (4.20). Since we are in the situation of an affine

cone over an isolated hypersurface singularity, [LU18, Section 3.1] shows that we

must have l = 0 in (4.60). Furthermore, there are no contributions when u < −1,

and the only possible contribution for u = −1 comes from when Nγ = span{x,y},

or z /∈ Vγ . When γ ∈ ker χ is the identity element, we have Vγ = V , Nγ = 0, and



160 Chapter 4. HMS for Milnor fibres of invertible curve singularities

Wγ = w. For every u ∈ Z≥0, the elements

xiy jzk ∈
(

Jacw⊗C[z]⊗χ
⊗u
)Γ

,

z∨⊗ xiy jzk+1 ∈
(

z∨⊗ Jacw⊗C[z]⊗χ
⊗u
)Γ

,

where i = u mod (p−1), j = u mod (q−1), and k = u+b u
q−1c+b

u
p−1c, contribute

C(k) to HH2u(Z0) and HH2u+1(Z0), respectively. In addition, in the case where

u≡ 0 mod (p−1), the elements

xp−1y jzk−1 ∈
(

Jacw⊗C[z]⊗χ
⊗u
)Γ

,

z∨⊗ xp−1y jzk ∈
(

z∨⊗ Jacw⊗C[z]⊗χ
⊗u
)Γ

,

where i, j, and k are as above, contribute C(k− 1) to HH2u(Z0) and HH2u+1(Z0),

respectively. In the case where u≡ 0 mod (q−1), we also have the elements

xiyq−1zk−1 ∈
(

Jacw⊗C[z]⊗χ
⊗u
)Γ

,

z∨⊗ xiyq−1zk ∈
(

z∨⊗ Jacw⊗C[z]⊗χ
⊗u
)Γ

,

where i, j, and k are again as above, contribute C(k − 1) to HH2u(Z0) and

HH2u+1(Z0), respectively. In the case when u≡ 0 mod (p−1)(q−1)
d , we also have the

elements

xp−1yq−1zk−2 ∈
(

Jacw⊗C[z]⊗χ
⊗u
)Γ

,

z∨⊗ xp−1yq−1zk−1 ∈
(

z∨⊗ Jacw⊗C[z]⊗χ
⊗u
)Γ

,

where i, j, and k are again as above, and these contribute C(k−2) to HH2u(Z0) and

HH2u+1(Z0), respectively.
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When Vγ = 0, Nγ =V , Wγ = 0, we have the summand

(
χ
∨⊗∧3N∨γ

)Γ ' C · x∨∧ y∨∧ z∨

contributes C(−1) to HH2u+dimNγ (Z0) = HH1(Z0), and there are pq−d−1 such γ .

In the case when Vγ = span{z}, Nγ = span{x,y}, Wγ = 0, we that for each

n ∈ Z≥0, the summands

C · z
(n+1)(pq−1)

d −1⊗ x∨∧ y∨ '
(

JacWγ
⊗χ

⊗ (n+1)(p−1)(q−1)
d −1⊗∧2N∨γ

)Γ

,

C · z∨⊗ z
n(pq−1)

d ⊗ x∨∧ y∨ '
(

JacWγ
⊗χ

⊗ n(p−1)(q−1)
d −1⊗∧2N∨γ

)Γ

,

contribute C( (n+1)(pq−1)
d −1) to HH

2(n+1)(p−1)(q−1)
d (Z0) and C(n(pq−1)

d −1) to

HH
2n(p−1)(q−1)

d +1(Z0). There are d−1 such contributions.

There are no elements which fix only x or y in the loop case. Putting this all

together, we have that the Hochschild cohomology of Z0 satisfies

HHs+t(Z0)t ' HHs+t+2 (p−1)(q−1)
d (Z0)s− pq−1

d
(4.64)
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for s > 0, and that for 0≤ n≤ 2 (p−1)(q−1)
d +1, HHn(Z0) is given by

HH0(Z0)' C(0),

HH1(Z0)' C(0)⊕C(−1)⊕pq

HH2u(Z0)' C
(
u+ b u

q−1
c+ b u

p−1
c
)

for (p−1),(q−1) - u

HH2u+1(Z0)' HH2u(Z0) for (p−1),(q−1) - u

HH2r(q−1)(Z0)' C
(
r(q−1)+ br(q−1)

p−1
c+ r

)
⊕C

(
r(q−1)+ br(q−1)

p−1
c+ r−1

)
for 1≤ r <

p−1
d

HH2r(q−1)+1(Z0)' HH2r(q−1)(Z0) for 1≤ r <
p−1

d

HH2r(p−1)(Z0)' C
(
r(p−1)+ br(p−1)

q−1
c+ r

)
⊕C

(
r(p−1)+ br(p−1)

q−1
c+ r−1

)
for 1≤ r <

q−1
d

HH2r(p−1)+1(Z0)' HH2r(p−1)(Z0)

HH2 (p−1)(q−1)
d (Z0)' C(

pq−1
d

)⊕C(
pq−1

d
−1)⊕

1+d
⊕C(

pq−1
d
−2)

HH2 (p−1)(q−1)
d (Z0)' HH2 (p−1)(q−1)

d +1(Z0).

Note that this is untwisted in every case.

4.4.2 Chain Polynomials

Consider the case W0 = xpy+ yq, where p,q≥ 2. This has weights as in (4.24), and

we again take d := gcd(p,q−1). We have Γw ' C∗×µd as in (4.26), and extend

the action to A3 as in (4.14) so that we now have

Γw = {(t0, t1, t2) ∈ (C∗)3| t p
1 t2 = tq

2 = t0t1t2}. (4.65)

The group of characters is given by

Γ̂w = Hom(Γw,C∗)' Z⊕Zd, (4.66)
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and we take m,n to be the same fixed solution to (4.27) as in Section 4.2.2. We write

each character (t0, t1, t2) 7→ t
ni+ p j

d
1 t

mi− (q−1) j
d

2 as ρi, j, where (i, j) ∈ Z⊕Zd . One then

has span{z∨} ' ρ (p−1)(q−1)
d ,0

, span{x∨} ' ρ q−1
d ,m, span{y∨} ' ρ p

d ,−n, χ ' ρ pq
d ,m−n,

ker χ ' µpq.

We have that Jacw is given as in (4.25). As in the loop case, we have l = 0 and

u≥−1 in (4.60), where u =−1 only if Nγ = span{x,y}, or z /∈Vγ . In the case where

γ ∈ ker χ is the identity, we have Vγ =V , Nγ = 0, and Wγ = w. For each u ∈ Z≥0,

we have that the elements

xiy jzk ∈
(

Jacw⊗C[z]⊗χ
⊗u
)Γ

,

z∨⊗ xiy jzk+1 ∈
(

z∨⊗ Jacw⊗C[z]⊗χ
⊗u
)Γ

,

where j = u mod (q−1), i = upq− jp
q−1 mod (p−1), and k = upq−i(q−1)− jp

(p−1)(q−1) , contribute

C(k) to HH2u(Z0) and HH2u+1(Z0), respectively. In addition, when u≡ 0 mod (q−

1), we have contributions from the elements

xi′yq−1zk′ ∈
(

Jacw⊗C[z]⊗χ
⊗u
)Γ

,

z∨⊗ xi′yq−1zk′+1 ∈
(

z∨⊗ Jacw⊗C[z]⊗χ
⊗u
)Γ

,

where i′ = upq−(q−1)p
q−1 mod (p−1) and k′ = upq−i′(q−1)−(q−1)p

(p−1)(q−1) , and these contribute

C(k′) to HH2u(Z0) and HH2u+1(Z0), respectively.

In the case where u≡ 0 mod (p−1)(q−1)
gcd(p−1,q) , we also have

xp−1zk ∈
(

Jacw⊗C[z]⊗χ
⊗u
)Γ

,

z∨⊗ xp−1zk+1 ∈
(

z∨⊗ Jacw⊗C[z]⊗χ
⊗u
)Γ

,

where k = upq
(p−1)(q−1) −1. These contribute to C(k) to HH2u(Z0) and HH2u+1(Z0),

respectively.
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For the elements γ ∈ ker χ such that Vγ = 0, Nγ =V , and Wγ = 0, we have that

the only contribution is from the summand

(
χ
∨⊗∧3N∨γ

)Γ ' C · x∨∧ y∨∧ z∨,

which contributes C(−1) to HH2u+dimNγ (Z0) = HH1(Z0), and there are pq− p−

gcd(p−1,q)+1 such γ .

In the case where Vγ = span{y}, there cannot be a contribution. There are p−1

such elements of ker χ which fix y and nothing else.

In the case where Vγ = span{z}, Nγ = span{x,y}, we have for each n ∈ Z≥0,

there are contributions from the summands

C · z
(n+1)pq

gcd(p−1,q)−1⊗ x∨∧ y∨ '
(

JacWγ
⊗χ

(n+1)(p−1)(q−1)
gcd(p−1,q) −1⊗∧2N∨γ

)Γ

,

C · z∨⊗ z
npq

gcd(p−1,q) ⊗ x∨∧ y∨ '
(

z∨⊗ JacWγ
⊗χ

n(p−1)(q−1)
gcd(p−1,q) −1⊗∧2N∨γ

)Γ

,

and these contribute C( (n+1)pq
gcd(p−1,q) −1) to HH

2(n+1)(p−1)(q−1)
gcd(p−1,q) (Z0) and C( npq

gcd(p−1,q) −1)

to HH2 n(p−1)(q−1)
gcd(p−1,q) +1

(Z0). There are gcd(p− 1,q)− 1 such terms. In total, we have

that

HHs+t(Z0)t ' HHs+t+2 (p−1)(q−1)
gcd(p−1,q) (Z0)t− pq

gcd(p−1,q)
(4.67)
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for s > 0, and for 0≤ n≤ 2 (p−1)(q−1)
gcd(p−1,q) +1, HHn(Z0) is given by

HH0(Z0)' C(0)

HH1(Z0)' C(0)⊕C(−1)⊕(p(q−1)+1)

HH2u(Z0)' C(b up
p−1

c) for (q−1) - u

HH2u+1(Z0)' HH2u(Z0) for (q−1) - u

HH2r(q−1)(Z0)' C(brp(q−1)
p−1

c)⊕C(b p(rq−1)
p−1

c) for 1≤ r <
p−1

gcd(p−1,q)

HH2r(q−1)+1(Z0)' HH2r(q−1)(Z0) for 1≤ r <
p−1

gcd(p−1,q)

HH2 (p−1)(q−1)
gcd(p−1,q) (Z0)' C(

pq
gcd(p−1,q)

)

⊕C(
pq

gcd(p−1,q)
−1)⊕gcd(p−1,q)⊕C(

pq
gcd(p−1,q)

−2)

HH2 (p−1)(q−1)
gcd(p−1,q) +1

(Z0)' HH2 (p−1)(q−1)
gcd(p−1,q) (Z0).

This is twisted for the (p,q) = (3,2), but is otherwise untwisted.

4.4.3 Brieskorn–Pham Polynomials

Consider W0 = xp + yq, and without loss of generality, that p ≥ q ≥ 2. We are

excluding the case of p = q = 2, since d0 = 0 in this case. This has weights as in

(4.29), where we again set d := gcd(p,q). We have Γw ' C∗×µd , as in (4.31), and

extend the action to A3 as in (4.14), so that we now have

Γw = {(t0, t1, t2) ∈ (C∗)3| t p
1 = tq

2 = t0t1t2}. (4.68)

The group of characters is given by

Γ̂w := Hom(Γw,C∗)' Z⊕Zd, (4.69)

and we again take m,n to be the same fixed solution to (4.32) as in Section 4.2.3.

We write each character (t0, t1, t2) 7→ t
mi− q j

d
2 t

ni+ p j
d

1 , where (i, j) ∈ Z⊕Zd , as ρi, j.

One has that span{z∨} ' ρ (p−1)(q−1)−1
d ,d−m+n

, span{x∨} ' ρ q
d ,m

, span{y∨} ' ρ p
d ,−n,
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χ ' ρ pq
d ,0, and ker χ ' µ pq

d
×µd .

We have that Jacw is given as in (4.30). As in the loop and chain cases, we have

l = 0 and u≥−1 in (4.60), where u =−1 only if Nγ = span{x,y}, or z /∈Vγ . When

γ ∈ ker χ is the identity, we have that for 0≤ u≤ (p−1)(q−1)−1
d , the elements

xiy jzk ∈
(

Jacw⊗C[z]⊗χ
⊗u
)Γ

,

z∨⊗ xiy jzk+1 ∈
(

z∨⊗ Jacw⊗C[z]⊗χ
⊗u
)Γ

,

where i, j,k are solutions to

i− k =−mp

j− k =−nq

k = u+m+n

0≤ i≤ p−2

0≤ j ≤ q−2,

(4.70)

contribute C(k) to HH2u(Z0), and HH2u+1(Z0). In the case where u = (p−1)(q−1)−1
d ,

we have that there are precisely two solutions to (4.70), otherwise the solution is

unique.

For the elements γ ∈ ker χ such that Vγ = 0, Nγ =V , and Wγ = 0, we have that

the only contribution is from the summand

(
χ
∨⊗∧3N∨γ

)Γ ' C · x∨∧ y∨∧ z∨,

and this contributes C(−1) to HH2u+dimNγ (Z0) = HH1(Z0). There are (p−1)(q−

1)−gcd(p,q)+1 such γ .

When Vγ = span{x} or Vγ = span{y}, there is no contribution. There are q−1

and p−1 such elements in ker χ , respectively.
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When Vγ = span{z}, Nγ = span{x,y}, Wγ = 0 for n ≥ 0 we have that the

summands

C · z
(n+1)pq

d −1⊗ x∨∧ y∨ '
(

JacWγ
⊗χ

(n+1)(p−1)(q−1)
d −1⊗∧2N∨γ

)Γ

,

C · z∨⊗ z
npq

d ⊗ x∨∧ y∨ '
(

z∨⊗ JacWγ
⊗χ

n(p−1)(q−1)
d −1⊗∧2N∨γ

)Γ

,

contribute C( (n+1)pq
d − 1) and C(npq

d − 1) to HH
2(n+1)((p−1)(q−1)−1)

d (Z0) and

HH
2n((p−1)(q−1)−1)

d +1(Z0), respectively. There are gcd(p,q)− 1 such terms. Putting

this all together, we get that

HHs+t(Z0)t ' HHs+t+2 (p−1)(q−1)−1
d (Z0)t− pq

d
(4.71)

for s > 0, and that for 0≤ n≤ 2(p−1)(q−1)−1
d +1, we have that HHn(Z0) is given by

HH0(Z0)' C(0)

HH1(Z0)' C(0)⊕C(−1)⊕(p−1)(q−1)

HH2u(Z0)' HH2u+1(Z0)' C(k)

for u <
(p−1)(q−1)−1

gcd(p,q)
and k the unique solution to (4.70)

HH2 (p−1)(q−1)−1
gcd(p,q) (Z0)' C(

pq
gcd(p,q)

−2)⊕C(
pq

gcd(p,q)
−1)⊕gcd(p,q)−1

⊕C(
pq

gcd(p,q)
)

HH2 (p−1)(q−1)−1
gcd(p,q) (Z0)' HH2 (p−1)(q−1)−1

gcd(p,q) +1
(Z0).

Note that this is twisted in the case p = q = 3, and p = 4, q = 2, but is otherwise

untwisted.

4.4.4 Unfoldings of invertible polynomials

Of course, Theorem 4.4.1 can also be used to compute the Hochschild cohomology of

the category of matrix factorisations of an unfolded polynomial. For the polynomials

where dimU+ > 1, we will need some of these calculations in order to be able to
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isolate the correct mirror. Towards this end, we (partially) calculate HH2(Zu) in the

relevant cases.

Lemma 4.4.3. Let w an untwisted invertible polynomial in two variables such that

dimU+ > 1. Then:

• For w = xpy+ y2x and p > 2, we have HH2(Zu) = 0 unless u1,0 = 0, u1,1 6= 0

in (4.23).

• For w= x2y+xy2, we have dimHH2(Zu)< 3 unless u1,1 6= 0 and u0,0 = u1,0 =

u0,1 = 0 in (4.23).

• For w= xpy+y2 and p> 3, we have HH2(Zu) = 0 unless u1,1 6= 0 and u2,0 = 0

in (4.28)

• For w= x2y+y2, we have dimHH2(Zu)< 2 unless u0,1 6= 0 and u0,0 = u1,0 = 0

in (4.28).

Proof. In each of the cases we consider, the sequence (∂xWu,∂yWu) is a regular

sequence in S. Therefore, the cohomology of the Koszul complex, (4.58), will be

concentrated in degrees 0 and −1, and the only contributions to HH2(Zu) can come

from (JacWu⊗χ)Γ and (JacWu⊗ x∨∧ y∨)Γ. Note that if the latter term contributes

to HH2(Zu), then the polynomial is twisted, and we will not consider it.

The two loop polynomials we must consider are w = xpy + y2x for p > 2

and w = x2y + y2x. In the former case, the unfolding is given by Wu =

xpy + y2x + u1,1xyz + u1,0xz2. For a contribution to HH2(Zu), there must be

an element of JacWu which is proportional to χ . Note that if u1,1 = 0 then

dim(JacWu ⊗ χ)Γ = 0. On the other hand, we have that dim(JacWu ⊗ χ)Γ = 0

if u1,0 6= 0. In the case w = x2y+ y2x, we have that dim(JacWu ⊗ χ)Γ < 3 unless

u1,1 6= 0, and the other coefficients are zero.

The only chain polynomials which need to be considered are w = xpy+ y2 for

p > 3 and w = x2y+ y2. In the former case, note that if u1,1 = 0, or u1,1,u2,0 6= 0,
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then HH2(Zu) = 0. In the latter case, note that dimHH2(Zu)< 2 unless u0,1 6= 0 and

the other coefficients are zero.

4.5 Generators and formality
In this section, we recall and implement the results of various authors to establish

the required generation statements for the compact Fukaya category of the Milnor

fibre, and also the category of perfect complexes on Zu for any u ∈U+, as outlined

in Section 4.1.1.

As in the previous sections, let V̌ be the Milnor fibre of the transpose of an

invertible polynomial in two variables such that d0 > 0. Let {Si}µ̌

i=1 be a distinguished

basis of vanishing cycles, and let S be the full subcategory of DπF(V̌ ) whose objects

are {Si}µ̌

i=1. As in Section 4.1.1, denote by A the total A∞-endomorphism algebra S ,

A :=
µ̌⊕
i, j

homS(Si,S j). (4.72)

Let TL ∈ Symp(Σ;∂Σ) be the Dehn twist around a Lagrangian L in a surface with

boundary (Σ;∂Σ), as in [Sei08b, Section 16c]. By [Sei00, Theorem 4.17, Comment

4.18(c)], we have that

(
TS1 ◦ · · · ◦TSµ̌

)ȟ
= [2ď0]. (4.73)

Since ď0 > 0, the argument of [Sei03, Lemma 5.4] then shows that S split-generates

DπF(V̌ ), and so

DπF(V̌ )' perfS. (4.74)

On the B–side, let w : A2→A be an invertible polynomial in two variables such that

d0 > 0. In each case, we aim to associate U+ to the moduli space of A∞-structures on

a fixed quiver algebra. In order to do this, for each u ∈U+ we must find generators

Su of perfZu such that
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(i) the isomorphism class of the cohomology level endomorphism algebra

End•(Su) does not depend on u ∈U+, and

(ii) the generator S0 at 0 ∈ U+ admits a C∗-equivariant structure such that the

cohomological grading on End•(Su) is proportional to the weight of the C∗-

action.

If we find generators which satisfy condition (i), then we can think of deformations

of Z in terms of deformations of the A∞-structures on the cohomology level endo-

morphism algebra. Condition (ii) will be necessary to deduce that end•(S0) is formal.

Recall from Theorem 3.1.2 that mf(A2,Γw,w) has a tilting object, E , for any

two variable invertible polynomial w. For each u ∈U+, let Su be the image of E

under the pushforward functor

mf(A2,Γw,w)→mf(A3,Γw,Wu)' Db Coh(Zu).

It is then a consequence of [LU18, Theorem 4.1] that Su split-generates perfZu.

Let Au be the minimal model of the dg-endomorphism algebra of Su, end•(Su).

One then has a quasi-equivalence

DQCoh(Zu)' D(Au), (4.75)

and therefore, by the Morita invariance of Hochschild cohomology, an isomorphism

HH•(Zu)' HH•(Au). (4.76)

The cohomology algebra Au := H•(Au) is independent of u, and by [Ued14, Theo-

rem 1.1], is isomorphic as a vector space to (4.3). On both the A–, and B–sides, the

algebra structure is given as in (4.4), since A→ is the path algebra of a quiver with

no cycles, and so HH2(A→,(A→)∨[−1]) = (HH1(A→))∨ = 0.
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By exploiting the additional C∗-action, one can prove a general statement for

the formality of A0. This is done by first showing that the cohomological grading on

End•(S0) is proportional (equal in the case of curves) to the weight of the C∗-action.

This follows from the fact that the dualising sheaf of Z0 is trivial as an OZ0-module,

but has weight one with respect to the additional C∗-action. Since C∗ is reductive,

the chain homotopy to take end•(S0) to a minimal A∞-structure can be made C∗-

equivariant. Since µd lowers the cohomological degree by 2, the only map which

can be non-zero is µ2.

Theorem 4.5.1 ([LU18, Theorem 4.2]). A0 is formal.

In particular, this means that

HH•(Z0)' HH•(A), (4.77)

and so the computations in Section 4.4 imply that the moduli space of A∞-structures

on A is represented by an affine scheme of finite type. Furthermore, combining

equation (4.77) with Theorem 4.3.4, and the calculations in Sections 4.3.3 and 4.4

gives us that the A∞-structure on A, the A∞-endomorphism algebra of the generators

of DπF(V̌ ), is not formal (since SH•(V̌ ) 6= HH•(Z0)).

4.6 Homological mirror symmetry for invertible

curve singularities
In this section, we bring together the previous sections of the chapter to establish

Theorem 4.1.1. As noted above, the computations of Section 4.4 together with (4.77)

mean that the moduli space of A∞-structures on A is represented by an affine scheme

of finite type, U∞(A), for any untwisted invertible polynomial w. As explained in

Section 4.1.1, we would like to identify U∞(A) with the space U+ corresponding

to w by showing that the map (4.12) is an isomorphism. To this end, we utilise the

following special case of [LU18, Theorem 1.6]:

Theorem 4.6.1. Let w be an untwisted invertible polynomial in two variables such

that d0 > 0, and Γ be an admissible subgroup of Γw. Let A→ be the endomorphism
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algebra of a tilting object in mf(A2,Γ,w), and let A be the degree 1 trivial extension

algebra of A→. Then there is a C∗-equivariant isomorphism U+
∼−→ U∞(A) which

sends 0 ∈U+ to the formal A∞-structure on A.

This isomorphism descends to the quotient by the C∗-action, and so we get an

isomorphism
(
U+ \ (000)

)
/C∗ ∼−→M∞(A). It should be reiterated that the polynomial

being untwisted is a crucial assumption, as can be seen by considering, for example,

w = x3y+ y2. In this case, we have that HH2(Z0)<0 = C(3)⊕C(2)⊕2⊕C(1), but

U+ = A3.

Proof of Theorem 4.1.1. In each case, we know that the A∞-structure on A is not

formal, and so is represented by a point inM∞(A). By Theorem 4.6.1, this, in turn,

represents the A∞-structure corresponding to the dg-enhancement of the derived

category of perfect sheaves on a semi-universal unfolding of w. In the cases where

dimU+ = 1, we have that M∞(A) is a single point, and so the semi-universal

unfolding (up to scaling) corresponding to this point must be the mirror. Note that in

the cases w = x2y+ yq for q > 2 and w = xp + y2 for p > 4, we have

C[x,y,z]/(x2y+ yq + yz2)' C[x,y,z]/(x2y+ yq + xyz),

C[x,y,z]/(xp + y2 + x2z2)' C[x,y,z]/(xp + y2 + xzy)

by completing the square.

In the case where dim U+ > 1, we must exclude the points inM∞(A) other

than the claimed mirror. In the case w = xpy+ y2 for p > 3, we have by Lemma

4.4.3 that dimHH2(Zu) = 0 < dimSH2(V̌ ) unless u = (0,1). By Theorem 4.3.4,

we must therefore have that the mirror is identified with Zu for u = (0,1) ∈U+. A

similar argument in the cases w = x2y+ y2x and w = xpy+ xy2 for p > 2 leads to

identifying the mirrors as Zu for u = (0,0,0,1) and u = (0,1), respectively.

In the case of x2y+ y2, we have that if u 6= (0,0,1), then dimHH2(Zu)< 2 =

dimSH2(V̌ ) by Lemma 4.4.3, and so the mirror is identified with Zu for u = (0,0,1).
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Again, by completing the square, we have

C[x,y,z]/(x2y+ y2 + yz2)' C[x,y,z]/(x2y+ y2 + xyz).

In the case of w = x3+y2, we follow the same argument as in [LP11b]. Namely,

we have that if Zu is an elliptic curve, then HH•(Zu) exists in only finitely many

degrees by the Hochschild–Kostant–Rosenberg theorem. Since the symplectic

cohomology of the Milnor fibre is non-trivial in arbitrarily large degree, by Theorem

4.3.4, we have that the mirror cannot be smooth. We therefore have that the mirror

must be the nodal cubic Wu = x3 + y2 + xz4 +
3√2z6
√

3
, and we have

C[x,y,z]/(Wu)' C[x,y,z]/(x3 + y2 + xyz)

by a change of variables.

In the cases where the polynomial is twisted, the B–model does not have generic

stabilisers. In the language of [LP17b], this forms a ring of orbifold curves, and

homological mirror symmetry was established in this case in loc. cit.

The only invertible polynomial where d0 6> 0 is w = x2 + y2, for which d0 = 0.

This, however, corresponds to the mirror symmetry statement for C∗, which is

already well established. Therefore, Theorem 4.1.1 is true in this case, too.





Chapter 5

Homological mirror symmetry for

nodal stacky curves

5.1 Introduction
Whilst the topology of Riemann surfaces is very tractable and well-understood,

the various flavours of Fukaya categories of such surfaces have rich and intricate

structure. Correspondingly, homological mirror symmetry in this dimension has

been an active and fruitful area of research in recent years. This has not only lead

to new instances of homological mirror symmetry, but also interesting links to the

representation theory of finite dimensional algebras.

Let Σ be a surface with non-empty boundary and choose Λ a collection of

points on its boundary, called stops. Then, there exists the derived partially wrapped

Fukaya category introduced in Chapter 2, which we denote by DπW(Σ;Λ) ([Aur10],

[Syl16]). In good circumstances, this gives a categorical resolution (smooth and

proper) of the Fukaya category of Σ, DπF(Σ), and yields functors

DπF(Σ)→ DπW(Σ;Λ)→ DπW(Σ). (5.1)

The last category in this sequence is the (fully) wrapped Fukaya category of the

surface, and can be considered as the partially wrapped Fukaya category when Λ = /0.

The first functor above is full and faithful, and the second is given by localisation at
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the collection of Lagrangians supported near the stops.

Of particular interest to us is the seminal work of Haiden, Kontsevich, and

Katzarkov, [HKK14], who, amongst other things, give a combinatorial construction

for the partially wrapped Fukaya category of a surface with a particular collection of

stops. As part of the construction, the authors show that there exists a generating

collection of Lagrangians of the partially wrapped Fukaya category whose endomor-

phism algebra is formal and gentle. This class of algebras has long been of interest

to representation theorists ([AS87]), and this link with the symplectic geometry

of surfaces provided a new tool in their study ([OPS18], [APS19]). Converse to

the construction in [HKK14], it was shown in [LP20] how to construct a Z-graded

smooth surface with boundary, with a prescribed configuration of stops on this

boundary, from a homologically smooth, Z-graded gentle algebra.

On the algebro-geometric side of the correspondence, these algebras arose

independently (and chronologically prior) in the work of Burban and Drozd, [BD09],

who construct a categorical resolution of the derived category of perfect complexes

on certain curves. This category is given as the derived category of coherent modules

of a non-commutative sheaf of algebras, which they call the Auslander sheaf, and

denote by AC . Their main result is that this category has a tilting object whose

endomorphism algebra is gentle. Moreover, there is a sequence of categories

perfC → Db(AC−mod)→ Db Coh(C), (5.2)

where the first functor is again full and faithful, and the second is given by locali-

sation. It is still an open problem to find a B–side analogue to the work of [LP20].

Namely, to start with a given homologically smooth, Z-graded gentle algebra and

construct a B–model whose corresponding category has a tilting object whose

endomorphism algebra is precisely the algebra we started with. The present work

provides new examples of such geometric realisations of gentle algebras, although

does not include any examples whose corresponding graded marked surface on the
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A–side can have odd winding numbers. In particular, every line field considered in

this chapter comes from the projectivisation of a vector field, and so must have even

winding number (cf. Section 4.3.2). For example, the gentle algebra considered in

[BD18, Example 7.4] cannot arise as the endomorphism algebra of a tilting object

for a curve considered here.

The fact that gentle algebras arise as the endomorphism algebras of generating

objects on the A– and B–sides of homological mirror symmetry was first utilised

in [LP17b]. Here, the authors establish the conjecture in the case where C is a ring

or chain of projective lines with n irreducible components, but where the nodes,

and endpoints in the chain case, are allowed to be orbifold points. The irreducible

components of this curve are examples of weighted projective lines in the sense of

[GL87], and are referred to as balloons in [LP17b]. The mirror surface is constructed

by first considering the mirrors to the irreducible components, a cylinder with stops

on its boundary, and then gluing these cylinders together in a way which is mirror to

the stacky structure of the node where two irreducible components meet. The strategy

of proof is to establish a derived equivalence between the categorical resolutions on

the A– and B–sides by matching the corresponding gentle algebras. One can then

establish HMS by matching localising subcategories under this equivalence, and

then localising.

With the same notation as introduced in Chapter 1, we have the following

theorem:

Theorem 5.1.1. Let C be a Deligne–Mumford stack such that:

• The coarse moduli space of C is a ring or chain of n P1’s.

• Each irreducible component, Ci, has underlying orbifold Pri,−,ri,+ and generic

stabiliser µdi such that ri,+di = ri+1,−di+1 (we allow r1,− and/ or rn,+ = 0 in

the case of a chain of curves).

• The node qi := |Ci| ∩ |Ci+1| has isotropy group Hi and is presented as the
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quotient of SpecC[x,y]/(xy) by Hi, where the action is given by

h · (x,y) = (ψi,+(h)x,ψi+1,−(h)y)

for some surjective ψi,+ : Hi→ µri,+ and ψi+1,− : Hi→ µri+1,− .

Then

Db(AC−mod)' DbW(Σ;Λ)

is a quasi-equivalence of Z-graded pre-triangulated A∞-categories over C, where

Σ is a Z-graded, b-punctured surface of genus g such that the genus, boundary

components, and collection of stops are determined by the ri,±, di, and the local

presentation of the nodes as the quotient by Hi.

Unlike in the orbifold case considered in [LP17b], there is no canonical identifi-

cation of the isotropy groups at the nodes. Even if one fixes ψi+1,−, it is possible

to change the identification of Hi by an automorphism which pushes down to the

identity by ψi+1,−, and this is an equivalent presentation of the node. The source of

this non-uniqueness is that the generic stabilisers of the irreducible components are,

strictly speaking, torsors for µdi . The fact that there is no canonical identification

of Hi can then be explained by the fact that there is no canonical identification of

the generic stabiliser groups with µdi . In order to work concretely with groups, a

key ingredient in our argument is to choose a gerbe structure on the irreducible

components, which one can heuristically think of as a ‘principal Bµdi-bundle’ over

Pri,−,ri,+ . This is extra structure which allows us to work concretely with groups,

rather than torsors. We obtain the desired result by observing that the computations

are independent of the choice of gerbe structures.

For us, choosing a gerbe structure will be necessary in order to make an identifi-

cation kerψi,+ ' µdi (resp. kerψi+1,− ' µdi+1), yielding a short exact sequence of
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groups

1→ µdi → Hi
ψi,+−−→ µri,+ → 1,

and similarly for ψi+1,−. This short exact sequence will be of crucial importance;

however, computations only depend on the isomorphism class as a complex, rather

than the class as an extension. In particular, choosing different gerbe structures

may yield non-equivalent Ext–classes, although they will always be isomorphic as

complexes. The fact that the computations only depend on the isomorphism class of

the complex will mean that our results are independent of the gerbe structure chosen.

Gerbes have a long history in algebraic geometry, and were originally intro-

duced by Giraud in the study of non-abelian cohomology [Gir71]. Of particular

interest to us is the root stack construction of Cadman and Abramovich, Graber,

Vistoli ([Cad07], [AGV08]), as well as the toric Deligne–Mumford stack perspective

provided in [BCS03] and [FMN10].

Remark 5.1.2. Note that our presentation agrees with the orbifold case when each

di = 1 by observing that one can always arrange the action of Hi ' µri to be such

that ψi+1,− = id, and ψi,+ : µri
∧κi−−→ µri for some κi ∈ (Zri)

×.

Following [LP17b], when referring to a specific configuration of points on the

b boundary components of Σ, we will denote the partially wrapped Fukaya category

by W(Σ;m1,m2, . . . ,mb), where mi is the number of stops on the ith boundary

component. When there are d boundary components with m stops, we shall notate

this as (m)d .

As part of the equivalence of Theorem 5.1.1, the respective localising subcate-

gories are identified with each other. Moreover, one can match the characterisation of

the category of perfect complexes under the inclusion (5.2) with the characterisation

of the Fukaya category under the inclusion (5.1). This yields:
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Theorem 5.1.3. Let C and Σ be as in Theorem 5.1.1. Then

perfC ' DπF(Σ)

Db CohC ' DπW(Σ),

are quasi-equivalences of Z-graded pre-triangulated A∞-categories over C in the

case of a ring of curves. In the case of a chain of curves, there are quasi-equivalences

of Z-graded pre-triangulated A∞-categories over C

perfcC ' DπF(Σ;(r1,−)
d1,(0)b−d1−dn,(rn,+)

dn)

Db Coh(C)' DπW(Σ;(r1,−)
d1,(0)b−d1−dn,(rn,+)

dn),

where perfcC is the full subcategory of perfC consisting of objects with proper

support.

It should be emphasised that the choice of grading on the surface in the above

theorems is a crucial piece of data. Changing it would change the grading of the

endomorphism algebra of the generating Lagrangians, and, in general, would not

yield a derived equivalent algebra. Moreover, taking perfcC, as opposed to perfC, in

the case of a ring of curves is only necessary when r1,− and/ or rn,+ = 0.

As already mentioned, the primary motivation for generalising the approach of

[LP17b] to allow for the irreducible components to have non-trivial generic stabiliser

comes from invertible polynomials in two variables. By applying Theorem 5.1.1

to the B–model of the invertible polynomials in Lekili–Ueda conjecture, and then

showing that the resulting surface on the A–side is graded symplectomorphic to the

quotient of the corresponding Milnor fibre, we prove:

Theorem 5.1.4. Let w be an invertible polynomial in two variables with admissible

symmetry group Γ⊆ Γw and corresponding dual group Γ̌. Then, the action of Γ̌ on
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V̌ is free, and there are quasi-equivalences

DπF(V̌/Γ̌)' perfZw,Γ

DπW(V̌/Γ̌)' DbCoh(Zw,Γ)

of Z-graded pre-triangulated A∞-categories over C.

By combining the graded symplectomorphisms of Section 4.3.4 with Theorem

5.1.4, we deduce the following corollary:

Corollary 5.1.5. For each n ≥ 1 and q ≥ 2, let wloop = xn(q−1)+1y + yqx and

wchain = xnq+1y+ yq, each with the maximal symmetry group. We then have quasi-

equivalences

Db Coh(Zwloop)' Db Coh(Zwchain)

of Z-graded pre-triangulated A∞-categories over C.

Similarly, for each n ≥ 1 and p ≥ 2, or n ≥ p = 2, let w′chain = xpy+ yn(p−1),

wBP = xp + ynp, each with the maximal symmetry group. We then have quasi-

equivalences

Db Coh(Zw′chain
)' Db Coh(ZwBP)

of Z-graded pre-triangulated A∞-categories over C.

It should be emphasised that the Milnor numbers of the polynomials in Corollary

5.1.5 will not in general agree, since part of the proof is to show that the Milnor

numbers of the transpose polynomials agree. As already noted, this result was

previously obtained by purely algebro-geometric methods in [FK19].

Example 5.1.6. For example, consider the case of n = 1 and q = 4. Then, wloop =
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x4y+ y4x and wchain = x5y+ y4. We have

µ(w̌loop) = 16 = µ(w̌chain)

χ(V̌loop) = 15 = χ(V̌chain)

g(V̌loop) = 6 = g(V̌chain)

Arf(qloop) = 1 = Arf(qchain).

Therefore, the corresponding Milnor fibres are graded symplectomorphic by Lemma

4.3.3. Since graded symplectomorphisms induce quasi-equivalences on the corre-

sponding derived (wrapped) Fukaya categories, we deduce by Theorem 5.1.4 that

the B–models mirror to V̌loop and V̌chain are likewise derived equivalent.

5.1.1 Structure of the chapter

In Section 5.2, we recall the basic constructions of root stacks, both with and without

section. In Section 5.3, we review the theory of Auslander orders over nodal (stacky)

curves. In Section 5.4, we recall the construction of [HKK14] of the partially

wrapped Fukaya category. Sections 5.5 exposits the localisation argument on the A–

and B–sides with the necessary alterations to our setting before proving Theorem

5.1.1. Section 5.6 characterises the category of perfect complexes on the B–side and

the Fukaya category on the A–side before establishing Theorem 5.1.3. We provide

applications in Section 5.7 and give first an example which does not arise as the

Milnor fibre of an invertible polynomial before establishing Theorem 5.1.4.

5.2 Root stacks
In this section, we aim to give a brief and self-contained account of the constructions

of stacks and gerbes as we will later need them. For a detailed account, we refer to

the original sources of [Cad07], [AGV08], [FMN10], and [BCS03]. An excellent

reference on the subject is [Ols16], and a very readable introduction to the theory of

stacks is [Beh14]. The reader already proficient in the language of stacks, or willing

to take these constructions as a black box, is invited to skip to Section 5.3.
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The notion of a root stack was introduced independently in [Cad07] and

[AGV08]. There are two related notions of a root stack – the first is a way to

‘insert stackiness’ along an effective Cartier divisor, and the second defines a gerbe

structure, which ‘inserts stackiness’ everywhere, and also keeps track of the generic

stabiliser.

Recall that the stack [A1/C∗] is the classifying stack of line bundles with section

– this can be seen by considering a morphism to this stack as a principal C∗-bundle

with a global section of the corresponding associated line bundle. To define the

root stack of a line bundle with section, consider X a scheme, L an invertible

sheaf on X , s ∈ Γ(X ,L ) a global section, and r > 0 an integer. Moreover, let

θr :
[
A1/C∗

]
→
[
A1/C∗

]
be the rth power map on both A1 and C∗.

Definition 5.2.1 ([Cad07, Definition 2.2.1], [AGV08, Appendix B.2]). Define the

stack X(L ,s,r) to be the fibre product

X(L ,s,r)
[
A1/C∗

]
X

[
A1/C∗

]
pr2

pr1 θr

(L ,s)

This is a Deligne–Mumford stack ([Cad07, Theorem 2.3.3]), and is isomorphic

to X away from the divisor s−1(0). By construction, X(L ,s,r) comes with a line bun-

dle N and a section t ∈ Γ(X(L ,s,r),N) such that ϕ : N⊗r ∼−→ pr∗1L , and ϕ(tr) = pr∗1s.

Concretely, we have that for X a scheme, an object of X(L ,s,r) over a scheme S

consists of a quadruple

( f ,N, t,ϕ),

where f : S→ X is a morphism, N is an invertible sheaf on S, t ∈ Γ(S,N), and

ϕ : N⊗r ∼−→ f ∗L is an isomorphism such that ϕ(tr) = f ∗s. A morphism from

( f1,N1, t1,ϕ1) over S1 to ( f2,N2, t2,ϕ2) over S2 is a pair (h,ρ), where h : S1→ S2 is
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a morphism of schemes such that f2 ◦ f = f1, and ρ : N1
∼−→ h∗N2 is an isomorphism

such that

N⊗r
1 h∗N⊗r

2

f ∗1 L h∗ f ∗2 L

ρr

ϕ1 h∗ϕ2

∼

commutes, and the bottom isomorphism is canonical. The construction can be

generalised to when X is a Deligne–Mumford stack.

For an effective Cartier divisor, we will also use the notation X(D,r) to mean

X(OX (D),1D,r), where 1D is the tautological section vanishing along D. One can iterate

this root construction, and for D= (D1, . . . ,Dn) and~r = (r1, . . . ,rn), we define XD,~r

to be the root stack defined by iteratively applying the above construction. This is

equivalent to the fibre product

XD,~r
[
An/(C∗)n]

X
[
An/(C∗)n],

θ~r

where θ~r = θr1 × θr2 × ·· ·× θrn , and X →
[
An/(C∗)n] is given by the product of

(OX(Di),1Di)
n
i=1.

An important example for us will be the following:

Example 5.2.2 ([Cad07, Lemma 2.3.1]). For X = A1, and D = [0], there is an

equivalence X(D,r) '
[
A1/µr

]
, where µr acts via its natural character.

In fact, Example 5.2.2 can be generalised ([Cad07, Example 2.4.1], cf. [Ols16,

Theorem 10.3.10]) to any X = SpecA and L = OX , with s ∈ Γ(X ,OX) such that

D = s−1(0), yielding

X(D,r) '
[(

SpecA[x]/(xr− s)
)
/µr
]
,

where µr acts on b by t · x = t−1x, and t ·a = ta. In general, any root stack can be
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covered by such affine root stacks. For further exposition on root stacks of line

bundles with section we refer to the original references [AGV08], [Cad07], as well

as [Ols16, Section 10.3].

The second flavour of root stack defines a gerbe over the original scheme (or

stack), and we refer to [Ols16, Chapter 12] for a definition and further discussion

about generalities of gerbes. As already mentioned, one can think of a gerbe as a

‘BG-bundle’ over X for some group G, meaning that not only does the isotropy group

of each point contain a copy of G, but the identification of this copy of G in the

automorphism group of each point is a crucial part of the definition. In particular,

an equivalence of gerbes is an equivalence of categories which is compatible with

these identifications. Note that this means that two gerbes can be equivalent as

stacks, but inequivalent as gerbes, in analogy with how two principal G-bundles can

have diffeomorphic total spaces, but are not isomorphic G-bundles. As a simple

example, there are three principal µ3-bundles over S1, but two of them have total

space S1. More non-trivially, principal S3 bundles over S4 are classified by Z⊕Z,

and [CE03] establishes an explicit diffeomorphism between the total spaces of the

bundles classified by (1,1) and (2,0). In what follows, we will restrict ourselves to

the case at hand and only consider trivially banded gerbes, which are classified by

H2(X ,G).

Example 5.2.3. If one considers the topological setting, then a good example to

have in mind is given by the observation that any principal S1-bundle is in fact a

Z-gerbe, since BZ' K(Z,1)' S1. From this, we recover the usual classification of

principal S1-bundles as the cohomology class in H2(X) corresponding to the Euler

class.

To define a root stack of a line bundle (without section), consider L ∈ PicX .

Recall that such a line bundle is equivalent to a map X L−→ BC∗, and let BC∗ ∧
d
−→ BC∗

be the dth power map. Then, we have:

Definition 5.2.4 ([Cad07, Definition 2.2.6], [AGV08, Appendix B.1]). The stack
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X(L ,d) is defined to be the fibre product

X(L ,d) BC∗

X BC∗

pr2

pr1 ∧d

L

The stack X(L ,d) is a µd-gerbe over X , and, by construction, there is a line

bundle N ∈ PicX(L ,d) such that

N⊗d ' pr∗1L .

Of course, there is also a corresponding iterated statement (see, for example [FMN10,

Proposition 6.9]), although we will not make use of it. We will mainly use the

notation X(L ,d) =
d
√

L /X .

Perhaps a more geometric way to think of a root stack of a line bundle is given

in [AGV08, Appendix B.1]. Let L be a line bundle on a scheme X , and L ∗ be the

total space minus the zero section (i.e. the principal C∗-bundle associated to L ).

Then,

d
√

L /X = [L ∗/C∗],

where C∗ acts fibrewise with weight d. In particular, the usual description of the

weighted projective stack P(d,d) is recovered as d
√
O(−1)/P1, since O(−1)∗ =

A2 \
(
(0,0)

)
.

Remark 5.2.5. It should be noted that X(L ,d) and X(L ,0,d) are not equivalent. In-

deed, as is demonstrated in [Cad07, Example 2.4.3], the latter category is an

infinitesimal thickening of the former.

The Kummer sequence

1→ µd
ι−→Gm

∧d
−→Gm→ 1 (5.3)
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induces a long exact sequence on cohomology

· · · → H1(X ,Gm)
∂−→ H2(X ,µd)

ι∗−→ H2(X ,Gm)→ . . . . (5.4)

For a root stack d
√

L /X , the corresponding class in H2(X ,µd) is the image of L ∈

H1(X ,Gm)' PicX under the connecting homomorphism. Conversely, a µd-gerbe

is called essentially trivial if its corresponding class in H2(X ,µd) is in the image of

the connecting homomorphism. In particular, in the case where H2(X ,Gm) = 0, we

make the identification

H2(X ,µd)' PicX/d PicX ,

and so the cohomology class classifying the dth root of L is given by the quotient of

its corresponding class in the Picard group, namely its first Chern class. Moreover,

in this case [FMN10, Lemma 6.5] identifies H2(X ,µd)' Ext1Z(Zd,PicX), where a

class [L ] ∈ PicX/d PicX corresponds to the short exact sequence

0→ PicX → PicX×PicX/d PicXZd → Zd → 0, (5.5)

where the map PicX → PicX/d PicX is the projection, the map Zd → PicX/d PicX

is given by 1 7→ [L ], and the first morphism of the extension is L → (L ⊗d,0).

For each µd-gerbe X , there is an underlying orbifold. This is the stack which

results from the stackification of the prestack whose objects are the same as the

original stack, but whose isotropy groups are quotiented by µd . This process is

known as rigidification, although we refer to Appendix C of [AGV08] for the precise

details. It suffices for us to observe that, in the case where the gerbe is the stack of

roots of a line bundle on a scheme or orbifold, the map pr1 : d
√

L /X → X is the

rigidification map. In particular, for X = d
√

L /X and D a Cartier divisor on X , by

OX (D) we mean pr∗1OX(D).

Example 5.2.6. The most basic example of a gerbe is given by considering Bµd to
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be a µd-gerbe over a point.

Example 5.2.7. Consider an orbifold X and the trivial action of µd on X. Then the

resulting quotient stack is given by X ×Bµd , and corresponds to the stack of dth

roots of OX , or indeed any line bundle on X whose dth root exists in PicX.

Example 5.2.8. Consider the compactified moduli space of elliptic curvesM1,1 '

P(4,6). This is a Z2-gerbe over P(2,3), where the Z2-torsor corresponds to the

symmetry present in any lattice defining an elliptic curve. It can be constructed as

the stack of square roots of any line bundle L ∈ PicP(2,3) ' Z such that [L ] ∈

PicP(2,3)/2PicP(2,3)' Z2 is non-trivial. In this case, P(2,3) is the rigidification

of the moduli space of elliptic curves.

Example 5.2.9. Consider the short exact sequence

1→ K→ H→ G→ 1,

where K, H, and G are all finite abelian groups. Then BH→ BG is a K-gerbe, so is

classified by H2(BG,K)'H2(G,K), which recovers the usual classification of short

exact sequences in terms of group cohomology.

Remark 5.2.10. Note that above, and in what follows, we are implicitly taking K

to have the structure of a trivial G-module since we are only considering the case

of trivially banded gerbes. Furthermore, we will only consider the cases where G

and K are cyclic groups, and so we have H2(G,K)' Ext1Z(G,K) by the universal

coefficient theorem.

Example 5.2.11. In general, if Y is a K-gerbe over X , and x ∈ |X | has isotropy

group Gx, x ∈ |Y| has isotropy group Hx, then there is a short exact sequence

1→ K→ Hx→ Gx→ 1.

We will exclusively deal with root stacks, both with and without section, over

P1. To this end, consider D1 = [0] = q−, D2 = [∞] = q+, and~r = (a,b). Then we
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define

Pa,b := P1
D,~r

to be the weighted projective line with a stacky point of order a at q− and of order b

at q+. Unless gcd(a,b) = 1, this is not a weighted projective space; however, if this

is the case then we have

Pa,b ' P(a,b) :=
[
A2 \

(
(0,0)

)
/C∗

]
,

where C∗ acts on A2 \
(
(0,0)

)
with weights a and b. In general, the space Pa,b can

be realised as the quotient of A2 \
(
(0,0)

)
by C∗× µgcd(a,b) ([FMN10, Example

7.31]). Note that H2(Pa,b,Gm) = 0, and so all gerbes whose underlying orbifold is

Pa,b are essentially trivial.

Given a µd-gerbe over Pa,b, C, the structure of the gerbe at the points q± will

be of central importance to us. Observe that there is a natural (surjective) map

H2(Pa,b,µd)→ H2([A1/µa],µd)⊕H2([A1/µb],µd) (5.6)

which comes from the Mayer–Vietoris sequence, and this determines the Ext-class

at q± which locally describes the gerbe. Explicitly, let U− = [A1/µa], suppose that

C = d
√
L/Pa,b, and that L|U− ' OU−(nq−) has class β ∈ PicU− ' Za. Observe

that H2([A1/µa],µd)' Zgcd(a,d), and that the reduction β mod d yields an element

[β ] ∈ Zgcd(a,d) determining a short exact sequence

1→ µd → H−→ µa→ 1, (5.7)

classifying the gerbe on the patch U−, and corresponding to the dth root ofOU−(nq−).

By construction, there exists a (not unique!) character χd− of H− such that H− acts

via dχd− on the fibre of pr∗1OU−(nq) at the origin, and which pulls back via the

inclusion of µd to H− to a unit in Zd . Therefore, as N|U− we take the equivariant
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sheaf on A1 where H− acts via χd− on the fibre at the origin. By construction, for

any χ ∈ Ĥ−, there is a unique k ∈ {0, . . . ,d− 1} and j ∈ {m, . . . ,m+ a− 1} such

that H− acts on the fibre of the sheaf

pr∗1OU−( jq)⊗N⊗k (5.8)

at the origin with character χ . The local description of the gerbe on the patch

U+ = [A1/µb] is analogous, giving the local description of the gerbe on the two

patches of Pa,b. Conversely, the description of a gerbe on Pa,b is given by the local

description on U±, together with the information of how the two local descriptions

get identified on the overlapping C∗ = U+∩U−.

There is a strong link between the derived categories of root stacks and the

representation theory of finite dimensional algebras. If one takes a = b = 1, then this

relationship is classical, and is Beı̆linson’s result ([Beı̆78]) that

Db(P1)' Db(Λop−mod),

where Λ is the path algebra of the Kronecker quiver. This was generalised in [GL87]

to the situation P1
D,~r, where D is a finite collection of disjoint points with multiplicity

one, and~r is a tuple of positive integers. In particular, for D= (q−,q+) and~r = (a,b)

as above, it was shown that

Db(Pa,b)' Db(Λ
op
a,b−mod),

where Λa,b is the path algebra of the quiver

O(−aq−) O(−(a−1)q−) . . . O(−q−) O

O(−bq+) O(−(b−1)q−) . . . O(−q+) O.

x x x x

y y y y

(5.9)

As for sheaves on the gerbes constructed as the root stacks over orbifold curves,
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consider C = d
√

L /Pa,b for some L ∈ PicPa,b. There are natural full and faithful

functors

Φi : CohP1
a,b→ CohC

F 7→ pr∗1F ⊗N⊗i,

where pr1 : C → Pa,b is again the rigidification map. Taking the direct sum yields a

special case of [IU15, Theorem 1.5], giving an equivalence

CohC '
(

CohPa,b
)⊕d

. (5.10)

Note that is not just semi-orthogonal, but also orthogonal, and that the equivalence

is at the level of abelian categories. Therefore, the derived category of coherent

sheaves on a gerbe over Pa,b only depends on the generic stabiliser group and the

underlying orbifold.

It is essentially because of (5.10) that our results are independent of the precise

choice of gerbe structure on irreducible components. To elaborate, consider C to be a

chain of curves with two irreducible components which has isotropy group H at their

intersection; the general proceeds inductively. One can construct C as the pushout

C1

C2 BH,
ϕ

(5.11)

where ϕ : BH→C2 is the composition of the autoequivalence of BH induced from

the action of H on the node, followed by its inclusion into C2. Since the abelian (and

hence derived) categories of C1 and C2 are independent of gerbe structures by (5.10),

the only information required to understand the category of coherent sheaves of C is

the autoequivalence of BH, and this is independent of the gerbe structure chosen, as

well as the characters χd1,+ and χd2,− .
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5.2.1 Root stacks and stacky fans

The theory of toric Deligne–Mumford stacks was initiated in [BCS03], and the

relationship with gerbes and root stacks was explored in [FMN10]. For a more

in-depth account, we refer to these original sources.

Analogously to a toric variety, which contains an open, dense, torus, T , a toric

Deligne–Mumford stack is defined to be a smooth, separated Deligne–Mumford

stack with an open immersion of a Deligne–Mumford torus, T ×BG for G a finite

abelian group, such that the action of T ×BG on itself extends to the whole stack

([FMN10, Section 3]). In the case of invertible polynomials, we work with root

stacks over P1 on the B–side, although these curves are naturally presented as a

hypersurface in a quotient stack. Therefore, in order to be able to apply our theory,

we must demonstrate an equivalence between the irreducible components of the

curves arising in invertible polynomials, and root stacks over P1. To this end, recall

that the data of a stacky fan is given by a triple ΣΣΣ = (Σ,N,β ), where:

• N is a finitely generated abelian group (not necessarily torsion-free),

• Σ is a fan in NQ = N⊗ZQ with n rays such that the rays span NQ, and

• β : Zn→ N is a morphism of groups such that the image of the ith basis vector

of Zn in NQ is on the ith ray.

For simplicity, we will always assume that Σ is complete. From this data, one can

construct a toric DM stack in analogy with the Cox construction for toric varieties

([Cox95]) as follows. Let d be the rank of N, and choose a projective resolution

0→ Z` Q−→ Zd+`→ N→ 0.

Then, choose a map B : Zn→ Zd+` which lifts β . The cone of β , considered as a

morphism of complexes [0→ Zn]→ [0→ Z` Q−→ Zd+`→ 0], is given by the complex

0→ Zn+` [BQ]−−→ Zd+`→ 0.
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We define DG(β ) := coker([BQ]∨), and define the map

β
∨ : (Zn)∨→ DG(β )

by the composition (Zn)∨ ↪→ (Zn+`)∨ → DG(β ). We then have ZΣΣΣ = An \ (000)

(since Σ is complete) is the quasi-affine variety associated to the fan. By defining

GΣΣΣ = HomZ(DG(β ),C∗), we get a morphism GΣΣΣ → (C∗)n, and this induces an

action of GΣΣΣ on ZΣΣΣ via the natural action of (C∗)n on Cn. The resulting stack

X (ΣΣΣ) := [ZΣΣΣ/GΣΣΣ] is called the toric Deligne–Mumford stack associated to ΣΣΣ.

Example 5.2.12 ([BCS03, Example 3.5]). Let Σ be the complete fan in Q, and

β : Z2

2 −3

1 0


−−−−−−−→ Z⊕Z2 =: N.

Then one can check that

β
∨ : (Z2)∨

(
4 6

)
−−−−−→ DG(β )' Z,

and so the C∗ action on ZΣΣΣ = A2 \
(
(0,0)

)
is t · (x,y) = (t4x, t6y), yielding X (ΣΣΣ)'

P(4,6)'M1,1.

Given a stacky fan ΣΣΣ = (Σ,β ,N), one can associate its rigidification

ΣΣΣ
rig = (Σ,β rig,N/Ntor) by defining β rig : Zn → N/Ntor to be the composition

of β and the quotient morphism N → N/Ntor. The stack X (ΣΣΣrig) is the DM stack

associated to this stacky fan, and, by construction, comes with the rigidification map

X (ΣΣΣ)→X (ΣΣΣrig) induced from the injective morphism DG(β rig)→ DG(β ).

Closed substacks corresponding to cones of the fan are defined in [BCS03,

Section 4]. We will restrict ourselves to the case of rays (one-dimensional cones),

and recall the basic construction here. Let ρi be a ray of Σ, ei the positive generator of

the ith summand of Zn, Nρi the subgroup of N generated by β (ei), and N(ρi) =N/Nρi
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the quotient. This defines a surjection NQ→ N(ρi)Q, and the quotient fan Σ/ρi in

N(ρi)Q is defined as the image of the cones in Σ containing ρi under this surjection.

The link of ρi is defined as link(ρi) = {τ| τ +ρi ∈ Σ, and ρi∩ τ = 0}. Let ` be the

number of rays in link(ρi). We define the closed substack associated to ρi as the

triple ΣΣΣ/ρρρ iii = (Σ/ρi,N(ρi),β (ρi)), where

β (ρi) : Z`→ N(ρi)

is defined as the composition Z` ↪→ Zn β−→ N→ N/Nρi = N(ρi). In particular, the

divisor Dρi corresponding to the ray ρi is X (ΣΣΣ/ρρρ iii).

Of most importance to us is the fact that if X is a toric DM stack whose coarse

moduli space is P1 or P2, then (amongst other things) [FMN10, Theorem II] shows

that there exists a stacky fan whose corresponding quotient stack is X . Moreover,

in the case that X is an orbifold, this fan is unique. This is far from true in the

case where N has torsion, as is demonstrated in [FMN10, Example 7.29]. There

are several sources of non-uniqueness, although in our situation it is essentially

equivalent to the fact that it is possible to choose multiple lifts of an element in Zn to

Z.

From now on, we will restrict ourselves the the case of toric Deligne–Mumford

stacks whose coarse moduli space is given by P1 or P2. Let C = X (ΣΣΣ) be a toric

Deligne–Mumford stack whose rigidification is Pa,b. Then, [FMN10, Proposi-

tion 7.20] shows that there is a unique class in Ext1Z(Ntor,PicPa,b) such that the

Hom(Ntor,C∗)-banded gerbe over Pa,b associated to this class is equivalent to C.

The proof of this proposition is constructive, and it is straightforward to determine

the short exact sequence (5.5) from the data of a stacky fan. The main ingredient,

however, which we will use in our application to invertible polynomials is [FMN10,
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Theorem 7.24], which shows (as a special case) that if Σ is the complete fan in Q and

β : Z2

 a −b

n− n+


−−−−−−−−→ Z⊕Zd =: N,

then

X(ΣΣΣ)' d
√

L /Pa,b

as toric DM stacks, where L =O(q−)n−⊗O(q+)n+ .

Remark 5.2.13. It is important to emphasise that two inequivalent gerbes can be

equivalent as toric DM stacks. This happens when the corresponding Ext-classes

are isomorphic as sequences, but inequivalent as extensions – see [FMN10, Remark

7.23] and [BN05, Proposition 6.2]. In particular, the above application of [FMN10,

Theorem 7.24] only makes a claim about toric DM stacks. By [FMN10, Proposition

7.20], one can check when this equivalence is also an equivalence of gerbes, although

this will not be necessary for our purposes.

Example 5.2.14. (cf. [BCS03, Example 3.6]) Let Σ be the complete fan in Q,

N = Z⊕Z3, and

βn : Z2

1 −1

n 0


−−−−−−−→ Z⊕Z3.

Since Σ is complete, we have ZΣΣΣn =A2\
(
(0,0)

)
for any n. In the case of n mod 3= 0,

we have

β
∨
0 : (Z2)∨

1 1

0 0


−−−−−→ DG(β )' Z⊕Z3,

and so GΣΣΣ0 ' C∗×µ3, and X (ΣΣΣ0)' P1×Bµ3. In the case where n mod 3 6= 0, we
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have

β
∨
n : (Z2)∨

(
3 3

)
−−−−−→ DG(β )' Z,

and so GΣΣΣn ' C∗, and X (ΣΣΣn)' P(3,3) as toric DM stacks for any such n. However,

the class in Ext1Z(Z3,Z) corresponding to n is given by the sequence

0→ Z ×3−→ Z ×n−→ Z3→ 0,

and so n1 and n2 do not define equivalent gerbes unless n1 ≡ n2 mod 3. Moreover,

this shows

X (ΣΣΣn)' 3
√
O(1)/P1 for n mod 3 = 1, and

X (ΣΣΣn)' 3
√
O(2)/P1 for n mod 3 = 2.

This also demonstrates the non-uniqueness of the fan in the case where the DM stack

is not an orbifold – taking βn for any n ∈ Z yields a gerbe which is equivalent to the

3rd root of O(n mod 3).

5.3 Auslander orders
In this section, we give a brief account of the theory of Auslander orders, as intro-

duced in [BD09] and expanded upon in [LP17b], before constructing the relevant

generalisation.

Roughly speaking, an order is a non-commutative algebra which is finite over

its centre. In [BD09], the notion of an Auslander order was introduced in studying

non-commutative resolutions of the subcategory consisting of perfect complexes of

the derived category of coherent sheaves on certain curves. Such an order is a sheaf

of algebras, and a categorical resolution of the category of perfect complexes of the

underlying curve is given by the derived category of finitely generated left modules

of this sheaf, as discussed in the introduction to this chapter.
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Before moving on to the situation we are focusing on, it is instructive to review

the non-stacky case, as in [BD09]. Let C be a chain or ring of P1’s joined nodally,

and π : C̃→C its normalisation (i.e. C̃ is a disjoint union of P1’s). Let I be the ideal

sheaf of the singular locus, and define the sheaf of OC-algebras

F :=

 I
OC

 . (5.12)

One can then define the Auslander sheaf as

AC = EndOC(F) =

ÕC I

ÕC OC

 , (5.13)

where ÕC = π∗OC̃. In [BD09], the authors study the category of finitely generated

leftAC modules on the ringed space (C,AC). Their main result is that Db(AC−mod)

has a tilting object, and is also a categorical resolution of perfC. They also show that

Db Coh(C) is equivalent to the localisation of Db(AC−mod) by a certain subcategory

of torsion modules, yielding the sequence (5.2).

Remark 5.3.1. In [BD09], the authors work with triangulated categories, however,

these categories have unique dg-enhancements by the work of [LO10], and we work

with these enhancements.

In [LP17b], the authors build on the construction of [BD09] to allow for the

nodes to have stacky structure, meaning that the irreducible components are orbifold

curves of the form Pa,b. We further extend this approach to allow for the irreducible

components to have non-trivial generic stabiliser, although the major arguments in

[LP17b] carry over to our situation with only minor alterations.

Let C be a as in Theorem 5.1.1 and choose a compatible gerbe structure on

each irreducible component, meaning that the local model about qi,± is compatible

with the maps ψi,±. This can always be done by taking the root of a line bundle on
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Pri,−,ri,+whose restriction under (5.6) yields short exact sequences compatible with

the action of the isotropy group at the nodes. Two compatible gerbe structures on an

irreducible component will differ by how the two patches are identified on overlaps,

but by (5.10), this does not affect our theory. To ease notation, we let Pi = Pri,−,ri,+

be the rigidified ith irreducible component of C. Let

π : C̃ =
n⊔

i=1

C̃i→C

be the normalisation map, and Hi the isotropy group at the node qi = |Ci| ∩ |Ci+1|,

and H0 and Hn the isotropy groups of the points q1,− and qn,+, respectively, in the

chain case. At the points qi,+ and qi+1,−, there are, by construction, short exact

sequences

1→ µdi → Hi,+
ψi,+−−→ µri,+ → 1, and (5.14)

1→ µdi+1 → Hi+1,−
ψi+1,−−−−→ µri+1,− → 1. (5.15)

There are (non-canonical) isomorphisms Hi ' Hi,+ ' Hi+1,−, although by choosing

the representatives of (5.14) and (5.15) such that the ψi,+ (resp. ψi+1,−) are as in

Theorem 5.1.1, one can take these identifications to be the identity. This yields the

local model of qi.

Remark 5.3.2. It should be emphasised that, even when it would make sense, we

do not require that the short exact sequences (5.14), (5.15) are equivalent such that

Hi,+ ' Hi+1,− via the identity map, only that the groups Hi,+ and Hi+1,− can be

identified with Hi.

Recall that the ideal sheaf of a closed substack is the sheaf which pulls back to

the ideal sheaf of the preimage in any atlas. As such, we define

I =
⊕

i

πi∗OC̃i
(−qi,−−qi,+)

for a ring of curves, and analogously for a chain. Here πi : C̃i→C is again the natural
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projection. We let F be as in (5.12) and AC be as in (5.13). For any integers j, m,

and k ∈ {0, . . . ,di−1}, we define distinguished AC-modules

Pi( j,m,k) =

πi∗
(
OC̃i

( jqi,−+mqi,+)⊗N⊗k
i
)

πi∗
(
OC̃i

( jqi,−+mqi,+)⊗N⊗k
i
)
 .

For fixed integers j, m, and 0≤ k ≤ di−1, let Exci( j,m,k) be the collection

Pi( j,m,k) Pi( j+1,m,k) . . . Pi( j+ ri,−,m,k)

Pi( j,m,k) Pi( j,m+1,k) . . . Pi( j,m+ ri,+,k)

xi xi xi

yi yi yi

(5.16)

Note that by the decomposition (5.10), we have that Pi( j,m,k) is orthogonal to

Pi′( j′,m′,k′) unless k = k′. With this, it follows directly from the proof of [LP17b,

Lemma 1.2.1] that the modules Pi( j,m,k) are exceptional, and Exci( j,m,k) is an

exceptional collection for any fixed j, m, and k ∈ {0, . . . ,di− 1}. In the case of

di = 1 we omit k from the notation.

As in the non-stacky and orbifold cases we also define simple modules at each

node, given by

Sq =

 0

Oq

 .

Fixing an identification of the isotropy group of the node qi = |Ci| ∩ |Ci+1|

with Hi (for i counted modulo n in the ring case), let ψi,+ and ψi+1,− be as in be

as in (5.14) and (5.15), respectively. We have that locally, around qi, we can view

AC–modules as equivariant Hi modules on SpecC[x,y]/(xy) = SpecS, where the

Hi action is given by h · (x,y) = (ψi,+(h)x,ψi+1,−(h)y). We fix the µri+1,− action

on the fibre of the sheaf OPi+1(−qi+1,−) at qi+1,− to be via its natural character,

and similarly for the action of µri,+ on the fibre of the sheaf OPi(−qi,+) at qi,+.

Moreover, we define the character corresponding to the weight of the action of Hi on
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the fibre of OC̃i+1
(−qi+1,−) to be the character induced from the natural character of

µri+1,− under the dual of ψi+1,−, and we call this χri+1,− . We define χri,+ similarly as

the character of Hi induced by the natural character under the dual of ψi,+. For the

chosen gerbe structure, choose χdi,± such that di,±χdi,± = χri,± as in Section 5.2.

Since Hi is diagonalisable (is isomorphic to a closed subgroup of an algebraic

torus), we have an eigenspace decomposition of an Hi-equivariant S-module M as

M =
⊕
χ∈Ĥi

Mχ ,

where Ĥi is the group of characters of Hi. Furthermore, for any χ ∈ Ĥi there is a

twisting operation M 7→M{χ} which identifies the γ-eigenspace of M{χ} with the

(χ + γ)-eigenspace of M.

For a chain (resp. ring) of nodal stacky curves, consider a tuple of characters

χχχ = (χ0, . . . ,χn+1) ∈ Ĥ0⊕·· ·⊕ Ĥn+1 (resp. χχχ = (χ1, . . . ,χn) ∈ Ĥ1⊕·· ·⊕ Ĥn). We

call such a tuple admissible if there exists a line bundle OC̃i
( jqi,−+mqi,+)⊗N⊗k

i

on each C̃i such that Hi−1 acts on the fibre at qi,− with character χi−1 and Hi on the

fibre at qi,+ with character χi. Denote by Ĥad the set of admissible characters. It is

not true that Ĥad contains any tuple of characters; however, for any character χ ∈ Ĥi

there is a tuple in Ĥad such that χi = χ . For each admissible χχχ , we define the sheaf

M{χχχ} by gluing the line bundles of the above form together at the nodes.

Consider the map p : C →C, where C is the coarse moduli space of the stacky

curve, i.e. is a chain or ring of P1 joined nodally. Following [OS02], we call a sheaf

E on C an generator of QCoh(C) with respect to p if the natural map

p∗(p∗HomOC(E ,G))⊗E → G

is a surjection for any G.
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Lemma 5.3.3. The sheaf

⊕
χχχ∈Ĥad

M{χχχ}

is a generator of QCoh(C) with respect to p.

Proof. Let x be a point of C, considered as a map x : SpecC→ C. Let Gx be its

isotropy group, and denote by x̃ : BGx→ C the corresponding natural map. Then,

[OS02, Theorem 5.2] stipulates that if E is a locally free sheaf such that x̃∗E contains

every irreducible representation of Gx for every geometric point x, then E is a

generator of QCoh(C) with respect to p.

From the fact that for each χ ∈ Ĥi there is a χχχ ∈ Ĥad such that χi = χ , it is clear

that the fibre of
⊕

χχχM{χχχ} at any nodal point (as well as at q1,− and qn,+ in the

chain case) contains every irreducible representation of Hi. Since χdi pushes down

to a generator of Zdi , the fibre of
⊕

χχχM{χχχ} at a point whose isotropy group is µdi

contains every irreducible representation of µdi , and this establishes the claim.

To calculate the morphisms between the modules Sqi , and their twists Sqi{χ}

for χ ∈ Ĥi, with the Pi( j,m,k), we can work locally in the patch U = SpecS, as

above, and consider Hi equivariant AU -modules. We begin by observing that, as in

the non-stacky and orbifold cases, the only relevant Ext-class is given by the short

exact sequence of AU -modules

0→

I

I

→
 I

OU

→Sqi → 0, (5.17)

and that this class is Hi-equivariant. Therefore, we have morphisms

Ext1(Sqi,Pi( j,m,0)) = ai(m,0)

Ext1(Sqi,Pi+1( j,m,0)) = bi( j,0)

for any m ≡ −1 mod ri,+, and j ≡ −1 mod ri+1,−, respectively. ConsiderM{χχχ}
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such that the character at qi is χi. It is clear that we have

Sqi⊗M{χχχ} ' Sqi{χi}.

In particular, as in (5.8), we have that for each χ ∈ Ĥi, and any mi, ji, mi+1, ji+1 ∈Z,

there exists m ∈ {mi, . . . ,mi+ ri,+−1}, k+ ∈ {0, . . .di−1} and j ∈ { ji+1, . . . , ji+1+

ri+1,−−1}, k− ∈ {0, . . . ,di+1−1} such that Hi acts on the fibres of the sheaves

OC̃i
(mqi,+)⊗N⊗k+

i ,

OC̃i+1
( jqi+1,−)⊗N⊗k−

i+1

at qi,+ and qi+1,−, respectively, with character χ .

By twisting the sequence (5.17) byM{χχχ}, we obtain morphisms

Ext1(Sqi{χ},Pi( ji,m0 +m,k+)) = C ·ai(m,k+), and

Ext1(Sqi{χ},Pi+1( j0 + j,mi+1,k−)) = C ·bi( j,k−),
(5.18)

for each χ ∈ Ĥi, where m0 ∈ {mi, . . . ,mi + ri,+−1} is a distinguished element such

that

m0 ≡−1 mod ri,+, and (m,k+) as above solves

−mχri,+ + k+χdi,+ = χ, (5.19)

j0 ∈ { ji+1, . . . , ji+1+ri+1,−−1} is a distinguished element such that j0 =≡−1 mod

ri+1,−, and ( j,k−) as above solves

− jχri+1−+ k−χdi+1,− = χ. (5.20)

Now, we have constructed a full, strong exceptional collection consisting of the

objects:

• For any fixed ji, mi ∈ Z, and each irreducible component, being a µdi-gerbe
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over Pi, the collections

di−1⊕
k=0

Exci( ji,mi,k),

• For each node qi = |Ci|∩ |Ci+1|, the objects

Sqi{χk} for each χk ∈ Ĥi.

The endomorphism algebra of this collection is generated by the morphisms xi, yi

in (5.16), as well as the morphisms given by (5.18). The relations are ya = 0 and

xb = 0 whenever the composition is possible. The proof of this, as well as the claim

that the collection is full and strong, can be seen from following through the proof of

[LP17b, Theorem 1.2.3] mutatis mutandis (cf. [BD09, Theorem 9]). Of course, the

resulting category Db(AC−mod) only depends on the parameters stated in Theorem

5.1.1, ultimately for the same reason as Db Coh(C) does.

5.4 The partially wrapped Fukaya category
In this section, we recount the strategy of [HKK14] for constructing the partially

wrapped Fukaya category of a graded symplectic surface before describing the

collections of generating objects for surfaces glued from columns of cylinders, as

described in Section 4.3.2.

5.4.1 Computation of the partially wrapped Fukaya category

Given a surface with non-empty boundary, Σ, and a collection of stops on its bound-

ary Λ, [HKK14, Section 3] shows that if {Li} is a collection of pairwise disjoint

and non-isotopic Lagrangians such that Σ\
(
ti Li

)
is topologically a union of discs,

each of which with exactly one marked point on its boundary, then the Li generate

DbW(Σ;Λ). Moreover, it is also shown that the total endomorphism algebra of the

generators is formal, and can be described as the algebra of a quiver with monomial

relations. A connection to the representation theory of finite dimensional algebras

is given by the observation that the endomorphism algebra of such a generating
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collection of objects is gentle.

To construct the partially wrapped Fukaya category, it was shown that there

exists a ribbon graph dual to the collection of Lagrangians. This graph has an

n−valent vertex at the centre of each 2n-gon cut out by the Lagrangians, and the half

edges connect two vertices if that edge is dual to a Lagrangian on the boundary of

both of the corresponding discs. The cyclic ordering is induced from the orientation

of the surface. From this, it was shown in [HKK14, Theorem 3.1] that the partially

wrapped Fukaya category is given as the global sections of a constructible cosheaf

of A∞-categories on the ribbon graph. In particular, for each n-valent vertex at the

centre of a 2n-gon, there is a fully faithful inclusion functor

DbW(D2;n+1)→ DπW(Σ;Λ), (5.21)

where DbW(D2;n+1) is the derived partially wrapped Fukaya category of the disc

with n+1 stops on its boundary.

The two prototypical examples from which our strategy is built are the disc

with m points on its boundary, as well as the cylinder with a stops on one boundary,

and b stops on the other. Consider the disc with m stops on its boundary, and

m−1 Lagrangians, L1, . . . ,Lm−1 supported near these stops, as in Figure 5.1. The

morphisms between Lagrangians is given by the Reeb flow along the boundary of

the disc in the anticlockwise direction. Let ai : Li→ Li+1 be such a morphism, and

observe that ai+1ai = 0 for i = 1, . . . ,m−2. It is clear that the endomorphism algebra

of the direct sum
⊕m−1

i=1 Li is the Am−1 quiver with relations given by disallowing

any composition.

There are two key facts about the collection of Lagrangians L1, . . . ,Lm−1. The

first is that the Lagrangian Lm is quasi-isomorphic to the twisted complex

L1[m−2] L2[m−3] . . . Lm−2[−1] Lm−1. (5.22)
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m

L1
1

L2

2

Lm−2

m−2 Lm−1

m−1

L•

Figure 5.1: A collection of generating Lagrangians for D2 with m stops. The Reeb flow is
in the counter-clockwise direction.

This is first observed in [HKK14, Section 3.3], and will be important later in

our localisation argument. The second key observation is that the complement

D2 \
(
tm−1

i=1 Li
)

is a collection of topological discs, each with exactly one marked

point on the boundary. Therefore, the collection {L1, . . . ,Lm−1} generates the

partially wrapped Fukaya category DbW(D2;m).

The second fundamental example which forms the cornerstone of our strategy

is the cylinder, A, with a stops on one boundary component, and b on the other.

A generating collection of Lagrangians on such an annulus is given in Figure 5.2,

and its corresponding quiver in Figure 5.3. Observe that the quiver algebra of the

generators for the single annulus with a stops on one boundary component and b on

the other matches precisely the quiver algebra of the exceptional collection of Pa,b

given in (5.9). This establishes that

DbW(A;a,b)' Db Coh(Pa,b),

and this observation is at the heart of our strategy.

5.4.1.1 Circular Gluing

Here, we compute the partially wrapped Fukaya category for columns of cylinders

glued circularly, as in Section 4.3.2. To begin with, we add two stops on each

attaching strip – one on the top, and one on the bottom. We will refer to this collection
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P±0

P−•

P−a−1

P−a

P+
1

P+
•

P+
b−1

P+
b

Figure 5.2: A collection of generating La-
grangians for A(a,b;0). Top and bottom iden-
tified.

P−0 P−1 . . . P−a

P+
0 P+

1 . . . P+
b

x1 x2 xa

y1 y2 yb

Figure 5.3: Quiver for A(a,b;0).

as Λ. On the kth annulus in the ith column we have a collection of Lagrangians PPPi,k

of the same form as in Figure 5.2. This collection consists of the objects

{P+
i,0,k,P

+
i,1,k, . . . ,P

+
i,ri,k,P

−
i,0,k, . . .P

−
i,`i,k}.

The morphisms within this collection are of the same form as in Figure 5.3. For each

attaching strip, we consider a Lagrangian which spans it in such a way that the two

stops are in the clockwise direction of its endpoints. We label the Lagrangian which

spans the attaching strip beginning at the neighbourhood around the jth stop between

the ith and (i+1)st columns by Si, j. Here j ∈ {0, . . . ,rimi−1} and i ∈ Zn.

As well as the morphisms within each collection PPPi,k, if we write j = k+ri +

c+ and σ( j) = k−`i+1 + c− for k+ ∈ {0, . . . ,di− 1}, c+ ∈ {0, . . . ,ri− 1}, k− ∈

{0, . . .di+1−1}, and c− ∈ {0, . . . , `i+1−1}, we also have morphisms

ai, j : Si, j→ P+
i,c+,k+

bi, j : Si, j→ P−i+1,`i+1−1−c−,k−.

By construction, the complement of this collection of Lagrangians is the disjoint

union of hexagons, each with exactly one stop on its boundary. Therefore, we have

that the collection of Lagrangians consisting of all of the PPPi,k, as well as the Si, j is a
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generating collections of Lagrangians for DbW(Σ;Λ).

5.4.1.2 Linear Gluing

The case of linear gluing is almost identical to that of circular gluing; however, the

first and last columns are now no longer glued to each other. Due to this, we include

the stops on the distinguished boundary components in Λ, although we allow the

number of stops on the distinguished boundary components to be zero. In dividing

the surface into topological discs for the computation of the partially wrapped Fukaya

category, observe that a topological disc with a Lagrangian Si, j on its boundary is a

hexagon, as in the circular gluing case, and a quadrilateral otherwise. The generating

collection is again given by all of the PPPi,k, as well as the Si, j. See Figure 5.4 for an

example, where its corresponding quiver is given in Figure 5.5.

P±1,0,0

P+
1,1,0

P+
1,2,0

P−1,1,0

P−1,2,0

P±1,0,1

P+
1,1,1

P+
1,2,1

P−1,1,1

P−1,2,1

S1,0

S1,2

S1,1

S1,3

P−2,1

P−2,2

P−2,3

P−2,4

P±2,0

P+
2,1

P+
2,2

P+
2,3

Figure 5.4: Generating collections of Lagrangians for linear gluing of A(2,2;2) to A(4,3;1)
via σ1 : (0,1,2,3) 7→ (0,2,1,3). Top and bottom of each annulus is identified.
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P−1,0,0 P−1,1,0 P−1,2,0 P−1,0,1 P−1,1,1 P−1,2,1

P+
1,0,0 P+

1,1,0 P+
1,2,0 P+

1,0,1 P+
1,1,1 P+

1,2,1

S1,0 S1,1 S1,2 S1,3

P−2,4 P−2,3 P−2,2 P−2,1 P−2,0

P+
2,3 P+

2,2 P+
2,1 P+

2,0

x1,1,0 x1,2,0 x1,1,1 x1,2,1

y1,1,0 y1,2,0 y1,1,1 y1,2,1

a1,0

b1,0

a1,1

b1,1

a1,2

b1,2

a1,3

b1,3

x2,4 x2,3 x2,2 x2,1

y2,3 y2,2 y2,1

Figure 5.5: Quiver describing the endomorphism algebra of the generating collection of
Figure 5.4. Relations given by xb = 0 and ya = 0.

5.5 Localisation
As described in the introduction, there are natural localisation functors on the A– and

B–sides, given by the second functors in (5.1) and (5.2), respectively. The strategy

to establish Theorem 5.1.3 is to show that the quasi-equivalence in Theorem 5.1.1

intertwines localisation on both sides, although this argument is also required to

prove Theorem 5.1.1 in the case of a chain of curves with r1,− and/ or rn,+ zero.

In this section, we describe the localisation functors on the A– and B–sides before

establishing Theorem 5.1.1.

5.5.1 Localisation on the B–side

As in the non-stacky case ([BD09, Section 4]), we consider the functor

HomA(F ,−) :AC−mod→ CohC, (5.23)

and construct a subcategory T on which this functor vanishes. We again work locally,

and so the analysis follows from the non-stacky case by working equivariantly, as

is demonstrated in the orbifold case [LP17b, Section 3.2]. Note that this functor is

exact since F is a summand of AC , so is locally projective.
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In order to construct T , we define the modules

S̃i( j,k)± =

πi∗(OC̃i
( jqi,±)⊗N⊗k

i )|q
πi∗(OC̃i

( jqi,±)⊗N⊗k
i )|q

 ,

where q = πi(qi,±). These modules fit into the short exact sequences

0−→Pi( j−1,m,k)−→Pi( j,m,k)−→ S̃i( j,k)− −→ 0

0−→Pi( j,m−1,k)−→Pi( j,m,k)−→ S̃i(m,k)+ −→ 0,
(5.24)

and have support at πi(q±). When the point qi,± is not a node (i.e. the q1,− and qn,+

in the chain case) we set E±i ( j,k) = S̃i( j,k)±. If qi,± is a node, then we have natural

inclusions

Sqi{χ+} ↪→ S̃i(m,k)+

Sqi−1{χ−} ↪→ S̃i( j,k)−,

where χ+ (resp. χ−) is the character through which Hi (resp. Hi−1) acts on the fibre

of the sheaf OC̃i
(mqi,+)⊗N⊗k

i (resp. OC̃i
( jqi,−)⊗N⊗k

i ) at qi,+ (resp. qi,−). We

then define Ei( j,k)± to fit into the short exact sequences

0−→Sqi{χ+} −→ S̃i(m,k)+ −→ Ei(m,k)+ −→ 0,

0−→Sqi−1{χ−} −→ S̃i( j,k)− −→ Ei( j,k)− −→ 0.

As in the orbifold case, we find that the objects Ei( j,k)± are exceptional unless

πi(qi,±) is a smooth point with no stacky structure. At nodes, this follows from

the presentation as a quotient of xy = 0 by Hi. In this presentation, the relevant

Ext-groups are the Hi-invariant classes of the Ext-groups computed on xy = 0, and

it is shown in [LP17b, Lemma 3.2.1] that these groups vanish. In the case where

the point is a smooth point with non-trivial stacky structure, we find that the objects

Ei( j,k)± are exceptional from the locally projective resolution (5.24). We define T

to be the subcategory formed by direct sums of all the objects Ei( j,k)± supported at
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the nodes.

With this, we have that T ⊆Db(AC−mod) is a Serre subcategory, and identifies

CohC ' AC−mod/T

Db Coh(C)' Db(AC−mod)/〈T 〉.

To see this, note that the derived equivalence follows from the equivalence of abelian

categories by [Miy91]. The equivalence of abelian categories is given for non-stacky

curves in [BD09, Theorem 4.8], and the present situation follows from this. As

explained in the orbifold case, [LP17b, Proposition 3.2.3], one must check that the

unit of a certain adjunction is an equivalence, and this boils down to checking the

statement locally at nodes. One can then use the presentation at a node as the quotient

of xy = 0 by Hi, and the argument follows from the non-stacky case.

5.5.2 Localisation on the A–side

Part of the utility of the construction in [HKK14] is that it not only provides a

categorical resolution of the compact Fukaya category of a surface, but also gives an

explicit description of a map

DπW(Σ;Λ)→ DπW(Σ;Λ
′),

where Λ′ is obtained from Λ by removing stops. This map is given by taking the

quotient of the partially wrapped Fukaya category by the category generated by

Lagrangians which are supported near the stops being removed. In particular, by

removing all of the stops in the case of circular gluing, one recovers a map to the

wrapped Fukaya category of the surface. In the case of linear gluing, the situation is

analogous, however, the stops on the distinguished boundary components are not

removed. It is in this context that the quasi-isomorphism (5.22) and the functor (5.21)

show their utility by giving the Lagrangian supported near a stop to be removed in

terms of the generating Lagrangians of a disc.
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For circular gluing, we will define the object E+
i, j (resp. E−i+1, j) to be Lagrangian

supported near the stop on the bottom (resp. top) of the attaching strip beginning

at the neighbourhood of the jth stop on a boundary component between the ith and

(i+1)st columns. By again writing j = k+ri + c+ and σi( j) = k−`i+1 + c− for k+ ∈

{0, . . . ,di−1}, c+ ∈{0, . . . ,ri−1}, k− ∈{0, . . .di+1−1}, and c− ∈{0, . . . , `i+1−1},

we have by (5.22) and (5.21)

E+
i, j ' {Si, j[3]→ P+

i,c+,k+[2]→ P+
i,c++1,k+[1]}

E−i+1, j ' {Si, j[3]→ P−i+1,`i+1−1−c−,k−[2]→ P−i+1,`i+1−c−,k−[1]}.

In the case of linear gluing we have the same iterated cones in for the hexagonal

regions, as well as the cones

E−1, j ' {P
−
i, j[2]→ P−i, j+1[1]}

E+
n, j ' {P

+
i, j[2]→ P+

i, j+1[1]}.

Proof of Theorem 5.1.1. In order to prove the statement, it suffices to match the

generators of the categories in question. We begin with the case of a ring of curves,

or a chain where both r1,−,rn,+ > 0. On the B–side, we fix an exceptional collection

such that ji = 0 and mi =−1. We again label the characters in Ĥi such that χk+ri,++m

is the character of OC̃i
(mqi,+)⊗N⊗k+

i . On the A–side we construct the candidate

mirror as follows. For each irreducible component Ci of C, being a µdi-gerbe over

Pri,−,ri,+ , we consider a column of annuli A(ri,−,ri,+;di). Let j,k− solve

− jχri+1,−+ k−χdi+1,− = χk+ri,++m,

as in (5.20). We then define the permutation σi to be given by

k+ri,++m 7→ k−ri+1,−+(− j) mod ri+1,−.
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Let Σ be the surface constructed in this way, and let DbW(Σ;Λ) be its partially

wrapped Fukaya category, as described in Section 5.4.1. The identification of the

generation objects on both sides is given by:

P−i, j,k←→Pi( j,−1,k)

P+
i,m,k←→Pi(0,m−1,k)

Si, j←→Si{χ j}[−1].

From this, we can see that the endomorphism algebras of the two exceptional collec-

tions which generate their respective categories are equivalent, which establishes the

claim in this case.

To complete the proof in the case of a ring of curves, where either or both of

r1,−,rn,+ = 0, we must utilise [LP17b, Proposition 3.2.2], which, suitably reworded

to our context, states that under the above equivalence, we have a correspondence

{AC−modules E−i ( j,k)}←→ {E−i,ri,−k+ j[−1]} (5.25)

{AC−modules E+i (m,k)}←→ {E+
i,ri,+k+m−1[−1]}. (5.26)

The proof of the alteration of the statement to our situation follows directly from

the proof of the original statement. Namely, we let Exc be the direct sum of the

objects in the exceptional collection in Db(AC −mod) described in Section 5.3

and A its endomorphism algebra. One can describe the right A-modules of the

form RHom(Exc,−) corresponding to the objects E−i ( j,k) and E+i (m,k) in the

equivalence

RHom(Exc,−) : Db(AC−mod) ∼−→ Db(mod−A),

and see that they match with the objects in Db(mod− A) calculated using the

presentations of E−i, j (resp. E+
i, j−1) given in Section 5.5.2.
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Now, consider the case of rn,+ > r1,− = 0, and define the stack C to be the

same curve as C, but where C1 = P1,r1,+ . Namely, we have C = C \{q1,−}. Since AC

is isomorphic near q1,− to the matrix algebra over O, we have that the restriction

functor

AC−mod→AC−mod

identifies AC−mod with the quotient of AC−mod by the Serre subcategory gen-

erated by
⊕d1−1

k=0 E1(0,k)− (i.e.
⊕d1−1

k=0

Oq1,−

Oq1,−

⊗N⊗k
1 ). By the main result of

[Miy91], this yields a derived equivalence

Db(AC−mod)/〈
d1−1⊕
k=0

E1(0,k)−〉 ' Db(AC−mod).

From the first part of the proof, there is a graded surface (Σ,Λ) such that

DbW(Σ;Λ)' Db(AC−mod).

Now, since E−1 (0,k) is identified with E−1,k[−1] in (5.25), removing the stops on the

left distinguished boundary corresponds to localising Db(AC−mod) by the category

generated by
⊕d1−1

k=0 E1(0,k)−, which yields the result. The cases of r1,− > rn,+ = 0

or r0,− = rn−1,+ = 0 are analogous.

Remark 5.5.1. Choosing different values for mi and ji in the above theorem cor-

responds to changing the identification of the cylinders on the A–side by a cyclic

reordering. This yields homeomorphic mirrors, since cyclically changing the identifi-

cation of an individual annulus, and/ or reordering the annuli in a column, does not

change the number of cycles, or their length, in the cycle decomposition determining

the topology of the surface.
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5.6 Characterisation of perfect derived categories
In order to establish the statement about perfect objects in Theorem 5.1.3, one must

show that the compact Fukaya category and derived category of perfect complexes,

considered as full subcategories of DbW(Σ;Λ) and Db(AC−mod), respectively, are

identified with each other under the quasi-equivalence of Theorem 5.1.1. The aim

of this section is to characterise perfect complexes on the A– and B–sides of the

correspondence before establishing Theorem 5.1.3.

5.6.1 The derived category of perfect complexes

As in the localisation argument, our strategy closely follows that of [BD09, Theorem

2] for the non-stacky case. Let C be a ring or chain of curves with r1,−,rn,+ > 0, F

as in Section 5.3, and consider the functor

perfC → Db(AC−mod)

G 7→ FC⊗OC G.

In the non-stacky case, it is shown that this functor is full and faithful in [BD09,

Theorem 2 (5)], and this result is generalised to the orbifold case in [LP17b, Proposi-

tion 4.1.3]. As in these cases, one can again identify the essential image of perfC

in Db(AC−mod) as the subcategory which is both left and right orthogonal to the

category T defined in Section 5.5.1. The proof of the this follows verbatim from

the proof of [LP17b, Proposition 4.1.3 (i)] after replacing µr by H, an extension

of µr by µd . In the case of a ring of curves with rn,+ > r1,− = 0, the category of

compactly supported perfect complexes on C is identified with the category which

is both left and right orthogonal to T , where this category is formed by the ob-

jects of T , together with E1(k)− for 0 ≤ k ≤ d1− 1. To prove this, observe that

E−1 (0,k) '

Oq1,−(kχd1,−)

Oq1,−(kχd1,−)

 near q1,−, and so a module in perfC is left or right

orthogonal to
⊕d1−1

k=0 E
−
1 (0,k) if and only if its support does not contain q1,−. Then,

the rest of the proof in this case follows as in [LP17b, Proposition 4.1.3 (ii)]. The

cases when r1,− > rn,+ = 0 and r1,− = rn,+ = 0 are considered similarly.
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5.6.2 Characterisation of the Fukaya category

On the A–side of the correspondence, the characterisation of the Fukaya category as

a subcategory of the partially wrapped Fukaya category remains unchanged from

[LP17b, Section 4.2]. We briefly recall the argument here, and refer to loc. cit. for

the proof.

Let Ti be the collection of Lagrangians supported near the stops on the ith

boundary component. It is shown ([LP17b, Proposition 4.2.1]) that T ⊥i =⊥ Ti

corresponds to those Lagrangians in DbW(Σ;Λ) not ending on the ith boundary

component. One direction of this argument is clear: if there is a Lagrangian which is

either compact, or does not end on the ith boundary component, then the intersection

with the geometric representatives of Lagrangians supported near the stops can be

taken to be empty. In the other direction, one shows that if a Lagrangian does end on

a boundary component, then there is necessarily a non-trivial morphism at the level

of cohomology between this Lagrangian and a Lagrangian in Ti. In the case where

just one endpoint of the Lagrangian lies on the ith boundary component there is a

chain level morphism between the Lagrangian and a Lagrangian in Ti which is of

rank one, so the differential vanishes. In the case where both endpoints lie on the ith

boundary component, the chain level morphism complex between the Lagrangian

and a Lagrangian in Ti is either rank one or two. In the rank one case we again

have that the differential must vanish, and in the rank two case one shows that the

differential vanishes by a covering argument. This shows that any Lagrangian with

at least one endpoint on the ith boundary component cannot belong to T ⊥i . Checking

that a Lagrangian with at least one endpoint on the ith boundary component cannot

belong to ⊥Ti is done in the same way.

By summing over the boundary components of Σ we define T =
⊕

iTi. Then,

[LP17b, Corollary 4.2.2] shows:

• In the case of a ring of curves, the subcategory DπF(Σ) ⊆ DbW(Σ;Λ) co-

incides with T ⊥ =⊥ T , where T is the category generated by the objects
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E±i, j.

• In the case of a chain of curves with r1,−,rn,+ > 0, the subcategory

DπF(Σ;(r1,−)
d1,(0)b−d1−dn,(rn,+)

dn) ⊆ DbW(Σ;Λ) coincides with T ⊥ =⊥

T , where T is the category generated by E+
i, j for i ∈ {1, . . . ,n−1} and E−i, j for

i ∈ {2, . . . ,n}.

Proof of Theorem 5.1.3. In the case of a ring of curves, or a chain where r1,−,rn,+ >

0, the theorem follows from the observation that the generating objects of the category

T on both sides of the correspondence are identified under the equivalence given

in Theorem 5.1.1. In the case where rn,+ > r1,− = 0 we again consider C such

that C = C \{q1,−}. Then, the statement follows from using the characterisation of

perfC ⊆ Db(AC−mod)' DbW(Σ;Λ) as the category which is both left and right

perpendicular to T .

5.7 Applications
Before demonstrating our main application of invertible polynomials, we first con-

sider an example which does not arise in this context.

Example 5.7.1. For an example outside of the framework of invertible polynomials,

consider a ring of curves with two irreducible components given by

C1 =
4
√
O(q1,−+2q1,+)/P2,4

C2 =
2
√
O(q2,+)/P8,4,

where the presentation at qi ∈ |C1|∩ |C2| for i = 1,2 is given by the action of H1 =

µ2×µ8

(ζ i,η j) · (x,y) = (ζ i
η

2 jx,η jy)

at q1, and the action of H2 = µ8 on the node q2 is given by

t · (x,y) = (t2x, t4y),
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where the x coordinate is on C2 here. Letting U1,± = P2,4 \{q1,∓}, we have that the

isotropy group of the node q1,+ is determined by the class in H2(U1,+,µ4) given by

the restriction O(q1,−+2q1,+)|U1,+ . This yields the short exact sequence

1 7→ µ4
ϕ1,+−−→ µ2×µ8

ψ1,+−−→ µ4→ 1,

where ϕ1,+ is the map λ 7→ (ζ−1,η2), and ψ1,+ is given by the map (ζ i,η j) 7→ ζ iη2 j.

The short exact sequence characterising the isotropy group of the gerbe at q2,− is

split, and so we have χr2,− = (0,1) ∈ Z2⊕Z8 = Ĥ1, and take χd2,− = (1,0) ∈ Ĥ1.

Since χr1,+ = (1,2), we that the weight of H1 on the fibre of OC̃1
(q1,−+ 2q1,+) at

q1,+ is (0,−4) ∈ Ĥ1, and we take χd1,+ = (0,−1) ∈ Ĥ1.

At the node q2, the isotropy group at q1,− is determined by the class ofO(q1,−+

2q1,+)|U1,− in H2(U1,−,µ4), yielding the non-split exact sequence

1→ µ4→ µ8
∧4
−→ µ2→ 1,

where the first map is the inclusion. The short exact sequence corresponding to the

gerbe structure at q2,+ is given by

1 7→ µ2→ µ8
∧2
−→ µ4→ 1.

At the node q2 we have χr2,+ = 2 ∈ Z8 = Ĥ2, χr1,− = 4, and take χd1,− = χd2,+ =−1.

In order to compute the endomorphism algebra of the exceptional collection given

in Section 5.3, we order the characters of H1 such that χ4k1,++c1,+ is the character

k1,+χd1,+− c1,+χr1,+ . Similarly, we order the characters of H2 such that χ4k2,++c2,+

is the character k2,+χd2,+− c2,+χr2,+ .

To calculate the endomorphism algebra of the exceptional collection given in



218 Chapter 5. Homological mirror symmetry for nodal stacky curves

Section 5.3, fix ji = 0 and mi =−1 for i = 0,1. Then, there are morphisms

Ext1(Sq1{χ4k1,++c1,+},P1(0,c1,+−1,k1,+) = C ·a1(c1,+,k1,+),

Ext1(Sq1{χ4k1,++c1,+},P2((7+ k1,++2c1,+)),−1,c1,+)) = C ·b1(c2,−,k2,−).

At the node q2, we have morphisms

Ext1(Sq2{χ4k2,++c2,+},P2(0,c2,+−1,k2,−) = C ·a2(c2,+,k2,+),

Ext1(Sq2{χk},P1((2+ b
2c2,++ k2,+

4
c),−1,(2c2,++ k2,+)) = C ·b2(c1,−,k1,−).

Based on this, we can construct the mirror by gluing together A(2,4;4) to A(8,4;2)

via the permutations

σ1(4k1,++ c1,+) = 8(c1,+ mod 2)+(−k1,+−2c1,+) mod 8

σ2(4k2,++ c2,+) = 2(2c2,++ k2,+ mod 4)+(−b
2c2,++ k2,+

4
c) mod 2.

The cycle decompositions of determining the boundary components and their winding

numbers are

σ
−1
1 τ`2σ1τr1 =(0 13 8 7 2 15 10 5)(1 14 9 4 3 12 11 6)

σ
−1
2 τ`1σ2τr2 =(0 1 2 3)(4 5 6 7),

yielding two boundary components with winding number −16, and two with winding

number −8. The Euler characteristic is −24, and so the genus of the surface is 9.

Putting this all together, Theorem 5.1.1 yields

Db(AC−mod)' DbW(Σ9,4;(8)2,(16)2).
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Theorem 5.1.3 yields

perfC ' DπF(Σ9,4)

Db Coh(C)' DπW(Σ9,4).

This surface does not arise as the Milnor fibre of an invertible polynomial; however,

it is interesting to observe that it is graded symplectomorphic to a surface considered

in [LP20]. Specifically, it is shown that the surface obtained by gluing A(8,16;1)

to A(16,8;1) by the permutations σ0(x) = −x mod 16 and σ1(x) = −x mod 8 is

mirror to the ring of orbifolds whose irreducible components are given by P8,16

and P16,8, where the structure of the node is given by the action of G on xy = 0 by

t · (x,y) = (tx, ty) for G = µ8 or µ16. This curve is denoted by C(8,16;1,1) = Corb,

and [LP17b, Theorem A] establishes the existence of a surface Σ such that

Db(ACorb−mod)' DbW(Σ;(8)2,(16)2),

and [LP17b, Theorem B] yields

perfCorb ' DπF(Σ),

Db Coh(Corb)' DπW(Σ).

In this case, we can deduce that the surfaces Σ9,4 and Σ are graded symplectomorphic

by Lemma 4.3.3 (the Arf invariant doesn’t need to be checked in this case). Therefore,

there are derived equivalences

Db(ACorb−mod)' Db(AC−mod),

Db Coh(Corb)' Db Coh(C).

5.7.1 Invertible polynomials

In this section, we establish Theorem 5.1.4 by firstly applying Theorems 5.1.1

and 5.1.3 to the curves appearing as the B–model of invertible polynomials in two
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variables. We then show that the surfaces constructed are graded symplectomorphic

to V̌/Γ̌.

As in Chapter 2, consider an admissible subgroup Γ⊆ Γw. The group Γ̌ acts

naturally on A2 through its inclusion in ker χw̌, and in each case, Γ̌ = µ` acts on A2

by

ξ · (x,y) = (ξ x,ξ−1y). (5.27)

This can be checked directly, or deduced from the fact that Γ̌ is a diagonal matrix in

SL2(C), and so its two entries must be inverses of each other. Clearly, the only fixed

point of this action is the origin, which is not a point in the Milnor fibre, and so the

quotient of the Milnor fibre by Γ̌ is again a manifold.

5.7.1.1 Loop polynomials

For a loop polynomial w = xpy+ yqx, where we take p ≥ q, we consider W =

xpy+yqx+xyz with admissible grading group Γ⊆ Γw of index `= [Γw : Γ], and the

corresponding stack

Zwloop,Γ := [
(
W−1(0)\ (000)

)
/Γ],

where we take the action of Γ to be given by its inclusion to Γw. We identify Γ'

C∗×µ d
`
, where d = gcd(p−1,q−1). The stack Zwloop,Γ has a natural interpretation

as a codimension one closed substack in the toric DM orbifold [
(
A3 \ (000)

)
/Γ]. The

unique stacky fan describing this DM orbifold is readily checked to be given by the

data of

β : Z3


p−1
`

1−q
` 0

0 q−1 −1


−−−−−−−−−−−−−−→ Z2 =: N,

and each column corresponds to a ray of the fan Σ. The maximal cones of the fan

are given by the span of any two rays. In general, this is a quotient of weighted
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projective space by µ d
`
.

Remark 5.7.2. It is worth noting that we have made a choice in the identification

Γ'C∗×µ d
`
, and thus how Γ acts on A3\(000); however, the above fan is independent

of this choice. Choosing a different identification of Γ corresponds to choosing

different change-of-basis matrices in the Smith normal form decomposition of [BQ]∨

used to calculate its cokernel.

With this description, one can see that C1 = {y = 0} ⊆ Zwloop,Γ is the closed

substack of [
(
A3 \ (000)

)
/Γ] corresponding to the ray ρ2 = 1−q

` e1 +(q− 1)e2, and

similarly that C3 = {x = 0} is the closed substack corresponding to the ray ρ1 =

p−1
` e1. The quotient fan ΣΣΣ/ρρρ222 is given by the complete fan in Q, and

β (ρ2) : Z2

p−1 −1
1−p
` 0


−−−−−−−−−−→ Z⊕Z q−1

`
=: N(ρ2)

This is a µ q−1
`

-gerbe over Pp−1,1, and [FMN10, Theorem 7.24] establishes that there

is an isomorphism of toric DM stacks

C1 '
q−1
`

√
O(− p−1

`
q1,−)/Pp−1,1.

Similarly, we have an isomorphism of toric DM stacks

C3 '
p−1
`

√
O(q−1

`
q3,+)/P1,q−1.

The curve C2 is always an orbifold, and can be identified with C2 ' P q−1
` , p−1

`
.

Remark 5.7.3. It is worth reiterating that we are not claiming that the gerbe struc-

ture of C1 and C3 are given as above, only that there is an isomorphism of DM stacks.

Due to this, there is some freedom in the identifications, and we have chosen these

for later convenience.

The majority of the analysis in studying the modules over the Auslander sheaf

is at q3 = |C3| ∩ |C1|, which corresponds to the point [0 : 0 : 1] ∈ |X |. This node is
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presented as the quotient of xy = 0 by the action of µ (p−1)(q−1)
d
×µ d

`
given by

(t,ξ ) · (y,x) = (t
p−1

d ξ
−ny, t

q−1
d ξ

mx),

where m,n are Bézout coefficients solving

m(p−1)+n(q−1) = d. (5.28)

Therefore the gerbe structure of the point q3,+ is determined by the cohomology class

in Zgcd(q−1, p−1
` )
' H2([A1/µq−1],µ p−1

`
) corresponding to the mod p−1

` reduction of
(`−1)(q−1)

` ∈ Z. Similarly, we have that the gerbe at q1,− ∈ |C1| is classified by

the cohomology class in Zgcd(p−1, q−1
` )
' H2([A1/µp−1],µ q−1

`
) corresponding to the

mod q−1
` reduction of p−1

` ∈ Z. The corresponding short exact sequences at q3,+ and

q1,− are

1→ µ p−1
`

ϕ3,+−−→ µ (p−1)(q−1)
d
×µ d

`

ψ3,+−−→ µq−1→ 1, and (5.29)

1→ µ q−1
`

ϕ1,−−−→ µ (p−1)(q−1)
d
×µ d

`

ψ1,−−−→ µp−1→ 1, (5.30)

respectively. Here λ±, η , and ξ are

λ+ = e2π
√
−1 `

p−1 , λ− = e2π
√
−1 `

q−1 ,

η = e2π
√
−1 d

(p−1)(q−1) , ξ = e2π
√
−1 `

d ,

and ϕ3,+ is the map λ+ 7→ (η−n (q−1)`
d ,ξ−1), ψ3,+ is (ηa,ξ b) 7→ η

p−1
d a

ξ−nb, ϕ1,−

is λ− 7→ (ηm (p−1)`
d ,ξ−1), ψ1,− is (ηa,ξ b) 7→ η

q−1
d a

ξ mb, where m,n are again the

Bézout coefficients of (5.28).

From this description, we have that the group H3 acts on the fibre ofOC̃3
(−q3,+)

at q3,+ with weight χr3,+ = ( p−1
d ,−n)∈Z (p−1)(q−1)

d
⊕Z d

`
' Ĥ3 for m,n solving (5.28),

and similarly OC̃1
(−q1,−) at q1,− is acted on with weight χr1,− = (q−1

d ,m). The

character with which H3 acts on the fibre of N3 is (non-uniquely) determined by
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the condition that p−1
` χd3,+ = 1−q

` χr3,+ , and maps to a unit in Z p−1
`

under the dual

of ϕ3,+. The natural choice for this is χd3,+ = −χr1,− , and similarly we choose

χd1,− = χr3,+ .

In Ĥ3, we label the characters such that χk+(q−1)+i = −iχr3,+ + k+χd3,+ for

k+ ∈ {0, . . . , p−1
` −1} and i ∈ {0, . . . ,q−2}. This is the B–side version of labelling

the stops on the right side of the left column of cylinders top-to-bottom. With

this ordering, the sheaf on C̃1 whose fibre at q1,− is acted on by H3 with character

χk+(q−1)+i is given by

OC̃1
( jq1,−)⊗N⊗k−

1 ,

where j ∈ {0, . . . , p−2} and k− ∈ {0, . . . , q−1
` −1} solves

− jχr1,−+ k−χd1,− =−iχr3,+ + k+χd3,+. (5.31)

A solution to this is readily checked to be given by

k− =−i mod
q−1
`

j = k+−
p−1
`

⌊ −i`
q−1

⌋
mod p−1.

(5.32)

Fixing mi =−1 and ji = 0 as in the proof of Theorem 5.1.1, one computes

Ext1(Sq3{−iχr3,+ + k+χd3,+},P3(0,(i−1) mod q−1,k+)) = C ·a(i,k+), and

Ext1(Sq3{−iχr3,+ + k+χd3,+},P1(( j−1) mod p−1,−1,k−)) = C ·b( j,k−)

for j,k− as in (5.32).

Consider now the nodes q1 = |C1| ∩ |C2| and q2 = |C2| ∩ |C3|. The structure

of these nodes is far more simple, and at q1 we have the node is presented as the
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quotient of xy = 0 by the action of µ q−1
`

given by

t · (x,y) = (x, ty),

and analogously for q2. Therefore, one has Ĥ1 ' Z q−1
`

and Ĥ2 ' Z p−1
`

, and χr2,−

and χr2,+ are the identity in Z q−1
`

and Z p−1
`

, respectively. The character with which

H1 acts on the fibre of N1 at q1,+ (resp. on N3 at q3,−) is any unit of Ĥ1 (resp.

Ĥ2), and so we choose χd1,+ to be the identity and χd3,− to be minus the identity in

their respective character groups. With this, the morphisms between objects in the

exceptional collection supported at q1 are readily checked to be

Ext1(Sq1{c},P1(0,−1,c)) = C ·a(0,c)

Ext1(Sq1{c},P2((−1− c) mod
q−1
`

,−1)) = C ·b(−c),

and similarly for the morphisms between objects supported at q2.

As the mirror to C, we take the surface given by gluing A(p− 1,1; q−1
` ),

A(q−1
` , p−1

` ;1) and A(1,q− 1; p−1
` ) via the permutations σ1 = id ∈ S q−1

`
, σ2 =

id ∈S p−1
`

, and σ3 ∈S (p−1)(q−1)
`

is given by

k+(q−1)+ i 7→ k−(p−1)+(− j) mod p−1

for i, j solving (5.32). From this, it is clear that one boundary component with

winding number −2q−1
` arises from σ1, and similarly that one boundary component

with winding number −2 p−1
` arises from σ2. The number of boundary components,

and their winding numbers, arising from σ3 is given by the number of cycles, and

their respective lengths, of σ
−1
3 τ`1σ3τr3 . This permutation is given by

k+(q−1)+ i 7→

(q−1)
(
(k+−1) mod

p−1
`

)
+
(

i−1+
q−1
`

⌊(k+−1)`
p−1

⌋)
mod q−1
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and so there are gcd(q− 1, p+q−2
` ) = gcd(p− 1, p+q−2

` ) cycles, each of length
(p−1)(q−1)

gcd(`(q−1),p+q−2) . Therefore, gcd(q− 1, p+q−2
` ) boundary components arise from

this gluing, and each has winding number −2 (p−1)(q−1)
gcd(`(q−1),p+q−2) .

Putting this all together, we have that the surface constructed, call it Σwloop,Γ,

has 2+gcd(q−1, p+q−2
` ) punctures, and Euler characteristic given by

−χ(Σwloop,Γ) =
q−1
`

+
p−1
`

+gcd(q−1,
p+q−2

`
)

(p−1)(q−1)

`gcd(q−1, p+q−2
` )

=
pq−1

`
.

Therefore, the genus is

g(Σwloop,Γ) =
1
2`

(pq−1−gcd(`(q−1), p+q−2)).

Applying Theorem 5.1.1 yields a quasi-equivalence

Db(AC−mod)' DbW
(

Σwloop,Γ;2
p−1
`

,
(

2
(p−1)(q−1)

gcd(`(q−1), p+q−2)

)b
,2

q−1
`

)
,

where b = gcd(q−1, p+q−2
` ), and then Theorem 5.1.3 establishes quasi-equivalences

Db Coh(Zwloop,Γ)' DπW(Σwloop,Γ)

perfZwloop,Γ ' DπF(Σwloop,Γ).

In the case of Γ = Γw, we observe that the graded surface constructed on the

A–side is graded symplectomorphic to the Milnor fibre of the transpose invertible

polynomial. To see this, we note that the above gluing is the same as the gluing

permutation of Section 4.3.2.1, although where the identification of the cylinders in

A(p−1,1; q−1
` ) here have been rotated − 2π

p−1 degrees. It was established in loc. cit.

that the surface glued in this way is graded symplectomorphic to the Milnor fibre

of w̌ by comparing the corresponding ribbon graphs. Building on this strategy, we

establish a graded symplectomorphism V̌/Γ̌' Σwloop,Γ by first making a topological
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identification via the quotient ribbon graphs, and then deducing that the grading

structures match by elimination.

Recall the description of V̌ as w̌−1
ε (−δ ) for 0 < δ � ε given in Section 3.3,

where

w̌ε = w̌− ε x̌y̌ = x̌y̌(x̌p−1 + y̌p−1− ε) = x̌y̌w̌.

Firstly, observe that the Morsification chosen is Γ̌-equivariant, and so taking the quo-

tient commutes with Morsifying. Moreover, since the quotient map is an unramified

cover and the deformation retract preserves equivalence classes of the quotient map,

the deformation retract which takes V̌ to its ribbon graph induces a deformation

retract of V̌/Γ̌ onto the quotient ribbon graph. With respect to the classification of

critical points in Section 3.3.1, we refer to neck regions which form by smoothing

critical points of type (i) as neck regions of type (i), and the corresponding node in

the ribbon graph as a node of type (i). We refer similarly to neck regions and nodes

of type (ii) and (iii). We label the nodes of type (i) and (ii) according to the x̌ and

y̌ argument of the corresponding critical points, respectively. Then, the lth node of

type (i) is identified with the (l + p−1
` )th node of type (i). Similarly, the mth node

of type (ii) is identified with the (m− q−1
` )th node of type (ii). This partitions the

nodes of the ribbon graph.

To understand how Γ̌ partitions the edges, recall that part of the basis for the

first homology group of V̌ is given by the Lagrangians lVy̌w̌ (resp. mVx̌w̌ and Vx̌y̌),

which were defined as the waist curves which form in the lth neck region of type

(i) (resp. the mth neck region of type (ii), and the neck region of type (iii)) upon

smoothing. Since Morsification commutes with the action of Γ̌, the Lagrangians lVy̌w̌

and l+ p−1
` Vy̌w̌ become identified in the quotient, and therefore so to do the edges of

the ribbon graph onto which these Lagrangians deformation retract. The analogous

statement for the Lagrangians mVx̌w̌ is also true, and so we see that two loops of the

graph are identified with each other when the corresponding nodes are.
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To understand the action of Γ̌ on the remaining edges, recall that two nodes

are connected by an edge if there is a vanishing cycle which passes through both

corresponding neck regions. The cyclic ordering of the nodes is determined by

the argument of the Lagrangian away from the neck regions which it connects –

see, for example, Figure 3.8. From this, it is clear that edges between the node of

type (iii) and nodes of type (i) (resp. type (ii)) are identified in the quotient when

the corresponding nodes of type (i) (resp. type (ii)) are. All that remains is to

understand the action of Γ̌ on edges which connect the nodes of type (i) and (ii). For

this, recall (Section 3.3.5) that the remaining vanishing cycles which form a basis of

the first homology of V̌ are given by l,mV0 for l ∈ {0, . . . , p−2}, m ∈ {0, . . . ,q−2},

and these are the Lagrangians which pass through the lth neck region of type (i)

and the mth neck region of type (ii). By analysing the action of Γ̌ on the x̌ and

y̌ projections of the Milnor fibre, as given in Section 3.3.3, we see that l,mV0 gets

identified with l+ p−1
` ,m− q−1

` V0 as it enters the {w̌ = ε} component the Milnor fibre.

Away from the neck regions which connect it to the {x̌ = 0} and {y̌= 0} components,

{w̌ = ε} is an unramified cover of
{
{u+ v = ε}\ (Bδ (ε,0)∪Bδ (0,ε))

}
⊆ C2, and

so the Lagrangians l,mV0 and l+ p−1
` ,m− q−1

` V0 get identified in the component {w̌ = ε}.

Therefore, the edge of the ribbon graph connecting the lth node of type (i) with the

mth node of type (ii) gets identified with the edge connecting the (l + p−1
` )th node

of type (i) with the (m− q−1
` )th node of type (ii) – see Figure 5.6 for an example.

Note that this identifies the cyclic ordering of the two nodes in a non-trivial way.

Moreover, the pushforward of the basis of the first homology for the ribbon graph of

V̌ given by the deformation retract of vanishing cycles spans the first homology of

the quotient ribbon graph. Therefore, the pushforward of vanishing cycles spans the

first homology of V̌/Γ̌. It should be emphasised, however, that we are making no

attempt to precisely describe a basis of Lagrangians on V̌/Γ̌; we only claim that the

vanishing cycles span the first homology of V̌/Γ̌. In general, two Lagrangians l,mV0

and l+ p−1
` ,m− q−1

` V0 are not isotopic in the quotient, but are related by Dehn twists

around the waist curves of the cylinders through which they both pass.
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Figure 5.6: Part of the ribbon graph corresponding to V̌ for w̌ = x̌5y̌+ y̌5x̌. For clarity, we
have only drawn the edges which form the cycles onto which the vanishing cycles i,−iV0 for
i ∈ {0,1,2,3} deformation retract. In the quotient of V̌ by Γ̌ = µ2, the two red cycles and
two green cycles are identified, and the representatives of the nodes are given by the blue
and yellow nodes (recall arg x̌ =−arg y̌), together with the node of type (iii). In the case of
Γ̌ = µ4, all coloured cycles are identified, and the blue nodes, as well as the node of type
(iii), are taken as the representative in the quotient.

Since the cyclic ordering at nodes is identified in a non-trivial way, one

must choose a representative of each equivalence class of nodes to work with

a specific ordering. By convention, we will choose the nodes of type (i) corre-

sponding to the neck regions which arise from smoothing the critical points with

argument arg x̌ ∈ {0, 2π

p−1 , . . . ,
2π(p−1−`)
`(p−1) }, and similarly we choose the nodes of

type (ii) to correspond to the smoothing of the critical points of type (ii) with

arg y̌ ∈ {0,− 2π

q−1 , . . . ,−
2π(q−1−`)
`(q−1) }. Figures 5.7 and 5.8 show the cases of V̌/Γ̌

for V̌ the Milnor fibre of x̌5y̌ + y̌5x̌ and Γ̌ = µ2, µ4, respectively. From this,

we see that the surface corresponding to this quotient ribbon graph is given by

gluing A(p− 1,1; q−1
` ), A(q−1

` , p−1
` ;1) and A(1,q− 1; p−1

` ) via the permutations

σ1 = id ∈S q−1
`

, σ2 = id ∈S p−1
`

, and σ3 ∈S (p−1)(q−1)
`

, where σ3 is given by

k+(q−1)+ i 7→
(
(−i) mod

q−1
`

)
(p−1)+(p−2− k++

p−1
`
b −i`

q−1
c).

As in the maximally graded case, this only differs from the gluing given for Σwloop,Γ

by changing the identification of the cylinders in the column A(p−1,1; q−1
` ).

To identify the line field used to grade V̌/Γ̌, observe that the pushforward
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Figure 5.7: Ribbon graph corresponding to V̌/µ2 for w̌ = x̌5y̌+ y̌5x̌.

Figure 5.8: Ribbon graph corresponding to V̌/µ4 for w̌ = x̌5y̌+ y̌5x̌.

of any vanishing cycle in V̌ is gradeable with respect to the line field which is

horizontal on cylinders and parallel to the edges of the attaching strips. Indeed, for

the waist curves to be gradeable, the only possible line field is the one which is

horizontal on cylinders. To see that the pushforward of the Lagrangians l,mV0 are

gradeable with respect to the claimed line field, observe that the pushforward of

such a Lagrangian deformation retracts onto a cycle of the quotient ribbon graph

which passes through three nodes, one each of type (i), (ii), and (iii). Therefore, the

pushforward Lagrangian is characterised by which attaching strips it passes through,

as well as some number of Dehn twists about the waist curves in the cylinders which

the attaching strips connect. For this curve to be gradable, the line field must be

(homotopic to) the claimed line field. By the uniqueness (up to homotopy) of the

line field with respect to which the pushforward of the vanishing cycles of V̌ are all

gradeable, the line field on V̌/Γ̌ is homotopic to the line field which is horizontal on
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cylinders and parallel to the edges of the attaching strips. This completes the proof

of Theorem 5.1.4 in the case of loop polynomials.

5.7.1.2 Chain polynomials

For a chain polynomial w = xpy+ yq we consider W = xpy+ yq + xyz, and Γ⊆ Γw

of index ` with identification Γ' C∗×µ d
`
, where d := gcd(p,q−1). We define the

corresponding stack

Zwchain,Γ := [
(
W−1(0)\ (000)

)
/Γ],

where Γ acts by its inclusion into Γw. This stack has two irreducible components

– the first is C2 = {xp + yq−1 + xz = 0} ' P (p−1)(q−1)
` , q−1

`

, and the second we identify

with a µ q−1
`

-gerbe over P1,p−1 as follows. We identify C1 as the closed substack of

Zwchain,Γ corresponding to the divisor {y = 0}. Analogously to the loop case, we see

that the quotient stack [(A3 \ (000))/Γ] corresponds to the stacky fan given by the data

of a morphism

β : Z3

1 1−q 1

0 (p−1)(q−1)
` − p

`


−−−−−−−−−−−−−−−−→ Z2 =: N,

and the rays of the fan Σ correspond to the column vectors. The maximal cones

of the fan are given by the span of any two rays. In general, this is a quotient of

weighted projective space by µ d
`
.

With this description, we see that C1 is the closed substack corresponding to the

ray ρ2 = (1−q)e1 +
(p−1)(q−1)

` e2, and so C1 is given by the quotient fan consisting

of the complete fan in Q, N = Z⊕Z q−1
`

, and

β : Z2

p−1 −1

− p
` 0


−−−−−−−−−−→ Z⊕Z q−1

`
.
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Again, by [FMN10, Theorem 7.24], we see that there is an equivalence of toric DM

stacks

C1 '
q−1
`

√
O(− p

`
q1,−)/Pp−1,1.

As in the loop case, the computation of the morphisms in the exceptional collection is

done locally. To this end, consider a local presentation of the node q2 = |C2|∩ |C1|=

[0 : 0 : 1]. This is given by the quotient of xy = 0 by the action of µ (p−1)(q−1)
`

given by

t · (y,x) = (ty, tq−1x).

This yields χr1,− = q− 1 and χr2,+ = 1. Therefore, the presentation of the

gerbe C1 at q1,− is determined by the class of p
` mod q−1

` ∈ Zgcd(p−1, q−1
` )
'

H2([A1/µp−1],µ q−1
`
). This gives the short exact sequence

1→ µ q−1
`

↪→ µ (p−1)(q−1)
`

∧q−1
−−−→ µp−1→ 1.

The action of H2 on N1 at q1,− is such that q−1
` χd1,− = p

` χr1,− in Z (p−1)(q−1)
`

= Ĥ2,

and a natural choice for this character is χd1,− = 1. We order the characters in Ĥ2

such that χc =−c. With this ordering, the sheaf on C̃1 whose fibre at q1,− is acted

on by H2 with character χc is given by

OC̃1
( jq1,−)⊗N⊗k−

1 ,

where

k− =−c mod
q−1
`

j =− p
`
b −c`

q−1
c mod p−1.

(5.33)

From this, one can see that we have the following morphisms in the exceptional
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collection:

Ext1(Sq2{χc},P2(0,c−1)) = C ·a2(c)

Ext1(Sq2{χc},P1((−1− j) mod p−1,−1,k−)) = C ·b2(− j,k−)

for j,k− as in (5.33).

As in the loop case, the analysis of the node q1 = |C1|∩ |C2| is determined by

the choice of χd1,− . In particular, we have Ĥ1 = Z q−1
`

, χr2,− = 1, and take χd1,+ =−1.

We again order the elements of Ĥ2 such that χc = −c, and with this we have the

following morphisms in the exceptional collection:

Ext1(Sq1{χc},P1(0,−1,c)) = C ·a1(0,c)

Ext1(Sq1{χc},P2((c−1) mod
(p−1)(q−1)

`
,−1)) = C ·b1(c).

To construct the mirror to this curve, we glue together two columns, A(p−1,1; q−1
` )

and A(q−1
` , (p−1)(q−1)

` ;1) via the permutation σ1 = id ∈S q−1
`

gluing the first column

to the second, and the permutation σ2 ∈S (p−1)(q−1)
`

given by

c 7→ k−(p−1)+(− j) mod p−1

for k−, j as in (5.33) gluing the second column back to the first. From this, it is

clear that there is one boundary components arising from the first gluing, and it has

winding number −2q−1
` . From the second gluing, we have that σ

−1
2 τ`1σ2τr2 is given

by

c 7→ c−q,

and so there are gcd(q, p+q−1
` ) boundary components, each with winding number

−2 (p−1)(q−1)
gcd(`q,p+q−1) .
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Putting this all together, we have constructed a surface, call it Σwchain,Γ, which

has 1+gcd(q, p+q−1
` ) punctures, Euler characteristic

−χ(Σwchain,Γ) =
p(q−1)

`
,

and genus

g(Σwchain,Γ) =
1
2`

(pq− p+ `−gcd(`q, p+q−1)).

Applying Theorem 5.1.1 yields a quasi equivalence

Db(AZwchain,Γ
−mod)' DbW

(
Σwchain,Γ;2

q−1
`

,
(

2
(p−1)(q−1)

gcd(`q, p+q−1)

)gcd(q, p+q−1
` ))

.

Applying Theorem 5.1.3 yields

Db Coh(Zwchain,Γ)' DπW(Σwchain,Γ),

perfZwchain,Γ ' DπF(Σwchain,Γ).

In the case of maximally graded chain polynomials, observe that the above descrip-

tion differs from that of Section 4.3.2.2 only be a rotation of the identification of

the left boundary of the first annulus in the first column. Therefore, the surface

constructed in the maximally graded case is graded symplectomorphic to the Milnor

fibre of w̌ in the maximally graded case. In the case of ` > 1, we follow the same

strategy as in Section 5.7.1.1 to deduce that V̌/Γ̌ is graded symplectomorphic to

Σchain,Γ, and this establishes Theorem 5.1.4 in the case of chain polynomials.

5.7.1.3 Brieskorn–Pham polynomials

The case of Brieskorn–Pham polynomials is covered in [LP17b], although we include

it here for completeness. For each Brieskorn–Pham polynomial w = xp + yq, we

consider W = xp + yq + xyz, and Γ⊆ Γw a subgroup of index ` containing the group

generated by the grading element with identification Γ'C∗×µ d
`
. As in the previous
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cases, we define

ZwBP,Γ = [
(
W−1(0)\ (000)

)
/Γ],

where Γ acts by its inclusion into Γw. This stack has one irreducible component,

whose coarse moduli space is a nodal rational curve, and the normalisation is given by

C̃ ' P (p−1)(q−1)−1
` ,

(p−1)(q−1)−1
`

. We identify the coordinates in the patch of C̃ containing

q+ = ∞ as x, and in the patch containing q− = 0 as y. Therefore, the presentation of

C around the node q is given by the quotient of xy = 0 by H = µ (p−1)(q−1)−1
`

, where

the action is given by

t · (x,y) = (tq−1x, ty).

Correspondingly, H acts on the fibre of O(−q−) at q− with weight 1, and with

weight q−1 on the fibre O(−q+) at q+.

In Ĥ =Z (p−1)(q−1)−1
`

, we label the characters such that χc =−c(q−1). Then, for

each c∈Z (p−1)(q−1)−1
`

, we have the following morphisms in the exceptional collection:

Ext1(Sq{χc},P(0,c−1)) = C ·a(c)

Ext1(Sq{χc},P((c(q−1)−1) mod
(p−1)(q−1)−1

`
,−1)) = C ·b(c(q−1))

Correspondingly, the mirror surface is given by gluing the cylinder

A( (p−1)(q−1)−1
` , (p−1)(q−1)−1

` ;1) to itself via the permutation σ ∈S (p−1)(q−1)−1
`

given

by

c 7→ −c(q−1).

The commutator [σ ,τ] ∈S (p−1)(q−1)−1
`

, where τ is the permutation c 7→ c−1, is given
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by

c 7→ c− p.

Correspondingly, there are gcd(q, p+q
` ) = gcd(p, p+q

` ) boundary components, each

of winding number −2 (p−1)(q−1)−1
gcd(`q,p+q) . Therefore, the Euler characteristic is

−χ(ΣwBP,Γ) =
(p−1)(q−1)−1

`
,

and the genus is

g(ΣwBP,Γ) =
1
2`

(2`−1+(p−1)(q−1)−gcd(`q, p+q)).

Applying Theorem 5.1.1 yields

Db(AZwBP,Γ
−mod)' DbW

(
ΣwBP,Γ;

(
2
(p−1)(q−1)−1

gcd(`q, p+q)

)gcd(q, p+q
` ))

,

and applying Theorem 5.1.3 yields

Db Coh(ZwBP,Γ)' DπW(ΣwBP,Γ),

perfZwBP,Γ ' DπF(ΣwBP,Γ).

In the maximally graded case, the description of the mirror surface matches that of

Section 4.3.2.3 on-the-nose, and so is graded symplectomorphic to the Milnor fibre

of w̌. The proof that V̌/Γ̌ is graded symplectomorphic to ΣBP,Γ follows as in the

loop and chain cases, and this completes the proof of Theorem 5.1.4.

5.7.1.4 Proof of Corollary 5.1.5

Finally, in this subsection, we provide a proof of Corollary 5.1.5. Such a result was

previously obtained by purely algebro-geometric methods in [FK19], although here

we deduce it as a consequence of homological mirror symmetry.

Proof of Corollary 5.1.5. By observing that the results of Section 4.3.4 show that
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the wrapped Fukaya categories of the Milnor fibres of the transpose polynomials are

quasi-equivalent, Theorem 5.1.4 establishes that the derived categories of coherent

sheaves on their mirrors are, too.
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scientifiques de l’École Normale Supérieure, Ser. 4, 4(1):pp. 47–62,

1971.

[Aur10] Denis Auroux. Fukaya categories of symmetric products and bordered

Heegaard-Floer homology. Journal of Gökova Geometry Topology

GGT, 4:pp. 1–54, 2010.

[Aur14] Denis Auroux. A beginners introduction to Fukaya categories. Bolyai

Society Mathematical Studies, 26:pp. 85–136, 01 2014.

[BCS03] Lev Borisov, Linda Chen, and Gregory Smith. The orbifold Chow ring

of toric Deligne-Mumford stacks. Journal of the American Mathemat-

ical Society, 18:pp. 193–215, 09 2003.

[BD09] Igor Burban and Yuri Drozd. Tilting on non-commutative rational

projective curves. Mathematische Annalen, 351:pp. 665–709, 2009.

[BD18] Igor Burban and Yuri Drozd. Non-commutative nodal curves and

derived tame algebras. Preprint arXiv: 1805.05174, 2018.

[Beh14] Kai Behrend. Introduction to algebraic stacks. Cambridge University

Press, 2014.

[Beı̆78] Alexander Beı̆linson. Coherent sheaves on Pn and problems of linear

algebra. Functional Analysis and Its Applications, 12:pp. 214–216,

1978.

[BFK11] Matthew Ballard, David Favero, and Ludmil Katzarkov. A category of

kernels for equivariant factorizations and its implications for Hodge



Bibliography 239
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