
HOMOLOGICAL MIRROR SYMMETRY FOR NODAL STACKY CURVES

MATTHEW HABERMANN

Abstract. In this paper, we establish homological mirror symmetry where the A-model is a finite
quotient of the Milnor fibre of an invertible curve singularity, proving a conjecture of Lekili and
Ueda from [LU22] in this dimension. Our strategy is to view the B–model as a cycle of stacky
projective lines and generalise the approach of Lekili and Polishchuk in [LP17] to allow the irreducible
components of the curve to have non-trivial generic stabiliser. We then prove that the A–model which
results from this strategy is graded symplectomorphic to the corresponding quotient of the Milnor
fibre.

1. Introduction

To begin with, consider an n ˆ n matrix A with non-negative integer entries aij . From this, we
can define a polynomial w P Crx1, . . . , xns given by

wpx1, . . . , xnq “
n
ÿ

i“1

n
ź

j“1

x
aij
j .

If w is quasi-homogeneous, we can associate to it a weight system pd0, d1, . . . , dn;hq, where

wptd1x1, . . . , t
dnxnq “ thwpx1, . . . , xnq,

and d0 :“ h´ d1 ´ ¨ ¨ ¨ ´ dn. In [BH93], the authors define the transpose of w, denoted by qw, to be
the polynomial associated to AT ,

qwpx̌1, . . . , x̌nq “
n
ÿ

i“1

n
ź

j“1

x̌
aji
j ,

and we call this the Berglund–Hübsch transpose. One can associate a weight system for qw, denoted
by pď0, ď1, . . . , ďn; ȟq, in the same way as for w. We call a polynomial w invertible if the matrix A
is invertible over Q, and if both w and qw define isolated singularities at the origin.

A corollary of Kreuzer–Skarke’s classification of quasi-homogeneous polynomials, [KS92], is that
any invertible polynomial can be decoupled into the Thom–Sebastiani sum of atomic polynomials
of the following three types:

‚ Fermat: w “ xp1
1 ,

‚ Loop: w “ xp1
1 x2 ` x

p2
2 x3 ` ¨ ¨ ¨ ` x

pn
n x1,

‚ Chain: w “ xp1
1 x2 ` x

p2
2 x3 ` ¨ ¨ ¨ ` x

pn´1

n´1 xn ` x
pn
n .

The Thom–Sebastiani sums of polynomials of Fermat type are also called Brieskorn–Pham.

Remark 1.1. In this paper, we will use the word ‘chain’ to refer to both a chain of curves, as well as
a curve corresponding to an invertible polynomial of chain type (which is in fact a cycle of curves
with two irreducible components). We believe that this distinction will be clear from context.

To any invertible polynomial, one can associate its maximal symmetry group

Γw :“ tpt1, . . . , tn`1q P pC˚qn`1| wpt1x1, . . . , tnxnq “ tn`1wpx1, . . . , xnqu.

In general, this is a finite extension of C˚, and is the group of diagonal transformations of An which
keep w semi-invariant with respect to the character pt1, . . . , tn`1q ÞÑ tn`1, which we denote as χw.
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It follows from the fact that w is quasi-homogeneous that there is a natural inclusion

φ : C˚ ãÑ Γ

t ÞÑ ptd1 , . . . , tdnq,
(1)

and a subgroup Γ Ď Γw is defined to be admissible if it is of finite index and contains impφq. Given
an admissible subgroup Γ Ď Γw, we define the Berglund–Henningson dual group as

qΓ :“ HompΓw{Γ,C˚q. (2)

The extension to consider invertible polynomials with different grading groups was initiated by
Berglund and Henningson in [BH95] and systematically studied by Krawitz in [Kra10]. By construc-

tion, we have that qΓ Ď SLpn,Cq. Note that this definition differs from that of [Kra10, Definition
15]; however, [ET13, Proposition 3], shows that the above definition is equivalent1. With this setup,
homological Berglund–Hübsch–Henningson mirror symmetry predicts:

Conjecture 1. For any invertible polynomial w with admissible symmetry group Γ Ď Γw and

corresponding dual group qΓ, there is a quasi-equivalence

mfpAn,Γ,wq » FS
qΓ
pqwq

of pre-triangulated A8-categories over C.

In the above, mfpAn,Γ,wq is the dg-category of Γ-equivariant matrix factorisations of w on An,

and FS
qΓ
pqwq is the orbifold Fukaya–Seidel category of pqw, qΓq. Presently, there does not exist a

definition of such a category in full generality, although the work of [CCJ20] gives a candidate in
the context of invertible polynomials where d0 ď 0. In the maximally graded case where Γ “ Γw,
this is known as homological Berglund–Hübsch mirror symmetry, and goes back to [Tak10], [Ued06].
Recently, there have been many results in the direction of establishing this conjecture. In the max-
imally graded case it has been proven in several situations – in particular, for Brieskorn–Pham
polynomials in any number of variables in [FU11], and for Thom–Sebastiani sums of polynomials
of type A and D in [FU13]. The conjecture is also established for all invertible polynomials in two
variables in [HS20]. Progress on the conjecture was made in [PV21], where the authors demonstrate
that the exceptional collection in the category of matrix factorisations constructed in [AT20] satisfies
a recursion relation with respect to the number of variables. Recently, in [Hab22a], a reformulation
of Conjecture 1 in two variables ([FU13, Conjecture 6.1]) was established, incorporating the equiv-

ariance in the A–model by pulling back qw to the total space of the crepant resolution of C2{qΓ.

By the definition of qΓ (see Section 6 for the case of two variables which we consider), we have that
it is a subgroup of pC˚qn which keeps qw invariant, and so, in particular, preserves its fibres when

considering it as a map qw : Cn Ñ C. In this case, the (completed) Milnor fibre is qw´1p1q “ qV , so it

makes sense to define the equivariant Milnor fibre as the quotient stack rqV {qΓs, although it should be
emphasised that symplectic techniques in this setting are still in their infancy. Nevertheless, once
an appropriate definition of the wrapped Fukaya category for such a quotient stack is made sense
of, one expects:

Conjecture 2 ([LU22, Conjecture 1.4]). For any invertible polynomial w with admissible symmetry

group Γ Ď Γw and corresponding dual group qΓ, there is a quasi equivalence

WprqV {qΓsq » mfpAn`1,Γ,w ` x0x1 . . . xnq

of pre-triangulated A8-categories over C.

Here, mfpAn`1,Γ,w ` x0x1 . . . xnq is the dg-category of Γ–equivariant matrix factorisations of
w`x0 . . . xn on An`1, where the action of Γ has been extended in a prescribed way ([LU22, Section
2]). In the maximally graded case, this conjecture was recently established in the case of n ě 3 for all
simple singularities in [LU21], and the case of Brieskorn–Pham polynomials of the form x2

1`x
2
2`w

1Strictly speaking, the cited result pertains to the closely related maximal group of symmetries which keeps w
invariant, although the resulting quotient, and therefore dual groups, are the same.
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in [Li22]. Recently, progress towards a Z{2-graded equivalence was made for the Milnor fibre of any
maximally graded invertible polynomial in [Gam20].

There is a trichotomy of cases depending on the sign of d0, and in the case of d0 ą 0 (log general
type), a generalisation of Orlov’s theorem ([Orl09, Theorem 3.11]) yields an equivalence

mfpAn`1,Γ,w ` x0x1 . . . xnq » Db CohpZw,Γq, (3)

where

Zw,Γ :“
“`

SpecCrx0, x1, . . . , xns{pw ` x0x1 . . . xnqzp0q
˘

{Γ
‰

. (4)

The generalisation to the case where Γw is a finite extension of C˚ is straightforward, and the ex-
tension to the setting of dg-categories was studied in [Shi12], [Isi10], [CT13]. In two variables, every
invertible polynomial is of log general type except for x2 ` y2. This, however, corresponds to the
well-understood HMS statement for C˚.

Recall that the subcategory perf Zw,Γ Ď Db CohpZw,Γq is comprised of the objects which are
Ext-finite, since Zw,Γ is a proper stack. On the symplectic side, it is clear that compact Lagrangians
have finite dimensional Hom-spaces; however, it is not known in general if non-compact Lagrangians
necessarily do not. This is reasonable to expect though, and is certainly the case in all known
circumstances. In the equivariant setting, it makes sense that the same statement should be true,

since morphisms should be given by the qΓ-invariant pieces of the Floer complexes on qV . Therefore,
Conjecture 2 in the log general type case would imply an equivalence

FprqV {qΓsq » perf Zw,Γ. (5)

In the maximally graded case, the first instance of this was given in [LP11] for x3
1 ` x2

2. The
equivalence was subsequently establish in the cases of w “

řn
i“1 x

n`1
i and w “ x2

1`
řn
i“2 x

2n
i , both

for any n ą 1, in [LU22], and for all invertible polynomials in two variables in [Hab22]. Our main
result is a proof of Conjecture 1 and the implication (5) in the case of n “ 2, also allowing for the
B–model to be non-maximally graded.

Theorem 1. Let w be an invertible polynomial in two variables with admissible symmetry group

Γ Ď Γw and corresponding dual group qΓ. Then, the action of qΓ on qV is free, and there are quasi-
equivalences

FpqV {qΓq » perf Zw,Γ

WpqV {qΓq » DbCohpZw,Γq

of Z-graded pre-triangulated A8-categories over C.

Remark 1.2. It should be reiterated that, although there is a trichotomy of cases depending on
the weight d0, all but one invertible polynomials in two variables are of log general type, and this
exception is well-understood. We are therefore free to state Theorem 1 in the context of invertible
polynomials of log general type without further assumptions.

Remark 1.3. In general, it is not true that the action of qΓ on the Milnor fibre will be free; however,
the fixed points of the action on Cn always lie on the divisor tx̌1 . . . x̌n “ 0u, meaning that the action

on the very affine Milnor fibre qV X pC˚qn considered in [Gam20] is free.

Our proof of Theorem 1 is orthogonal to previous approaches to Conjecture 2, and instead follows
the more abstract construction of [LP17], before checking that this agrees with the predictions of
Conjecture 2.
In [LP17], the authors consider chains and cycles of weighted projective lines meeting nodally at
a point whose isotropy group is finite and cyclic, and where at most two points of an irreducible
component can have non-trivial isotropy group. The mirror symplectic surfaces are constructed by
gluing together the mirrors to the irreducible components of the curve via a permutation determined
by the stacky structure of the node.
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Stacky curves in the above presentation were first considered in [STZ14] as part of the coherent-
constructible correspondence, although the work of Lekili and Polishchuk generalises the class of
curves able to be considered by allowing the stacky structure at the nodes to be non-balanced.
Roughly speaking, the condition that the node be balanced means that the gluing maps of the
mirror are the identity. Moreover, allowing non-balanced curves is crucial in the construction of
mirrors to symplectic surfaces of genus greater than one, and this will continue to be important for
us.
In our approach to Theorem 1, we expand on the results of Lekili–Polishchuk to allow for the
irreducible components to have non-trivial generic stabiliser, and then consider the B–model of
Theorem 1 in the abstract as such a cycle of nodal stacky curves. We then show that the A–model
which we construct as its mirror is graded symplectomorphic to the quotient of the Milnor fibre of
the transpose polynomial by the corresponding Berglund–Henningson dual group. Fortunately, the
construction of the Auslander sheaf – a certain sheaf of non-commutative algebras – in the orbifold
case studied in [LP17] is robust, and carries through with only minor alteration when one includes
non-trivial generic stabilisers.

Let Pri,´,ri,` be the orbifold P1 with orbifold points pqi,´, qi,`q such that Aut qi,´ » µri,´ and
Aut qi,` » µri,` (in the chain case we are allowing r1,´ “ 0, and/ or rn,` “ 0, so that the

corresponding irreducible component is a (stacky) A1).

Theorem 2. Let C be the Deligne–Mumford stack such that:

‚ The coarse moduli space of C is a cycle or chain of n P1’s.
‚ Each irreducible component, Ci, has underlying orbifold Pri,´,ri,` and generic stabiliser µdi

such that ri,`di “ ri`1,´di`1 (we allow r1,´ and/ or rn,` “ 0 in the case of a chain of
curves).

‚ The node qi :“ |Ci| X |Ci`1| has isotropy group Hi and is presented as the quotient of
SpecCrx, ys{pxyq by Hi, where the action is given by

h ¨ px, yq “ pψi,`phqx, ψi`1,´phqyq

for some surjective ψi,` : Hi Ñ µri,` and ψi`1,´ : Hi Ñ µri`1,´.

Then

DbpAC ´modq »WpΣ; Λq

is a quasi-equivalence of Z-graded pre-triangulated A8-categories over C, where Σ is a Z-graded,
b-punctured surface of genus g such that the genus, boundary components, and collection of stops,
Λ, are determined by the ri,˘, di, and the local presentation of the nodes as the quotient by Hi.

Remark 1.4. Note that our presentation agrees with the orbifold case when each di “ 1 by observing

that one can always arrange the action ofHi » µri to be such that ψi`1,´ “ id, and ψi,` : µri
^κi
ÝÝÑ µri

for some κi P pZ{riqˆ. The notion of a node being balanced, mentioned above and appearing in the
work of [STZ14], is the condition that κi “ ´1.

Remark 1.5. Whilst we do not use this language, the above result, as well as Theorem 3 below, can
also be interpreted as an application of [GPS23].

It is well-known that passing to the quotient by an abelian group on the B–side corresponds to
a cover on the A–side by the dual group; the main difficulty in proving Theorem 2 is in keeping
track of these groups and how this structure ‘fits together’ at intersection points of the irreducible
components. This is the data of the presentation of the Hi-action at a node, and corresponds to a
choice of gerbe structure on each irreducible component, as reviewed in Appendix A. As part of the
proof, we show that the resulting categories are independent of this choice.
Following [LP17], when referring to a specific configuration of points on the b boundary components
of Σ, we will denote the partially wrapped Fukaya category by WpΣ;m1,m2, . . . ,mbq, where mi is
the number of stops on the ith boundary component. When there are d boundary components with
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m stops, we shall notate this as pmqd.

By identifying localising subcategories on the A– and B–sides in Theorem 2, we get:

Theorem 3. Let C and Σ be as in Theorem 2. Then

perf C » FpΣq

Db Coh C »WpΣq,

are quasi-equivalences of Z-graded pre-triangulated A8-categories over C in the case of a cycle
of curves. In the case of a chain of curves, there are quasi-equivalences of pre-triangulated A8-
categories over C

perfc C » FpΣ; pr1,´q
d1 , p0qb´d1´dn , prn,`q

dnq

Db CohpCq »WpΣ; pr1,´q
d1 , p0qb´d1´dn , prn,`q

dnq,

where perfc C is the full subcategory of perf C consisting of objects with proper support.

It should be emphasised that the choice of grading on the surface in the above theorems is a
crucial piece of data. Changing it would change the grading of the endomorphism algebra of the
generating Lagrangians, and, in general, would not yield a derived equivalent algebra. Moreover,
taking perfc C in the case of a cycle of curves is only necessary when r1,´ and/ or rn,` “ 0. The cat-
egory FpΣ;m1,m2, . . . ,mnq is the infinitesimally wrapped Fukaya category of [NZ06] (cf. [GPS18]).

With this in hand, we establish Theorem 1 by first explicitly exhibiting the B–model as a cycle of
weighted projective lines, and then constructing the mirror manifold according to Theorems 2 and
3. To finish the proof, we then demonstrate that these manifolds are graded symplectomorphic to
the A–models appearing in Theorem 1.

1.1. Structure of paper. In Section 2, we review the theory of Auslander orders over nodal
(stacky) curves, incorporating the necessary alterations of the orbifold case to allow for non-trivial
generic stabilisers. Section 3 is an application of the theory developed in [HKK14] to the curves
on the A–side which we consider, whilst Sections 4 and 5 exposit the changes to the localisation
argument and perfect complex characterisation of [LP17] required to prove Theorems 2 and 3. The
computational heart of the paper is in Section 6, which is devoted to the proof of Theorem 1. We
recall the basic constructions of root stacks, both with and without section, in the context of how
use them in Appendix A.

1.2. Conventions. We work over C throughout. For a Deligne–Mumford (DM) stack X we write
x P X to mean x : SpecC Ñ X , and let |X | be its underlying topological space. We refer to a DM
stack with trivial generic stabiliser as an orbifold. All Fukaya categories are completed with respect
to cones and direct summands.
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would like to thank his PhD supervisor Yankı Lekili for suggesting the project and his guidance
throughout. He would also like to thank Jack Smith, Dougal Davis, Ed Segal, Alessio Corti, and
Tim Magee for their interest in this work, and answering the author’s many questions during the
early stages of this project. This work was supported by the Engineering and Physical Sciences
Research Council [EP/L015234/1], The EPSRC Centre for Doctoral Training in Geometry and
Number Theory (The London School of Geometry and Number Theory), University College London.
The author gratefully acknowledges support from the University of Hamburg and the Deutsche
Forschungsgemeinschaft under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” –
390833306.
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2. Auslander orders

In this section, we give a brief account of the theory of Auslander orders over curves, as intro-
duced in [BD09] and expanded upon in [LP17], before constructing the relevant (mild) generalisation.
These are sheaves of non-commutative algebras, initially introduced to study non-commutative reso-
lutions of the subcategory consisting of perfect complexes of the derived category of coherent sheaves
on certain curves.

Before moving on to the situation we are focusing on, it is instructive to review the non-stacky

case, as in [BD09]. Let C be a chain or cycle of P1’s joined nodally, and π : rC Ñ C its normalisation
(i.e. a disjoint union of P1’s). Let I be the ideal sheaf of the singular locus, and define the sheaf of
OC-algebras

F :“

ˆ

I
OC

˙

. (6)

One can then define the Auslander sheaf as

AC “ EndOC pFq “
ˆ

rOC I
rOC OC

˙

, (7)

where rOC “ π˚O
rC
. In [BD09], the authors study the category of finitely generated left AC-modules

on the ringed space pC,ACq. Their main result is that DbpAC ´modq has a tilting object, and is a
categorical resolution of perf C. They also show that Db CohpCq is equivalent to the localisation of
DbpAC ´modq by a certain subcategory of torsion modules, yielding the sequence

perf C ãÑ DbpAC ´modq Ñ DbpCq (8)

Remark 2.1. In [BD09], the authors work with triangulated categories, however, these have unique
dg-enhancements by the work of [LU10]. In particular, Section 8 of loc. cit. shows that all categories
considered here, including the categories which result from localisation which we will discuss in
Section 4, have unique dg-enhancements. We are therefore free to work with triangulated categories,
since results established here lift to the dg-setting.

In [LP17], the authors build on the construction of [BD09] to allow for the nodes to have stacky
structure, meaning that the irreducible components are orbifold curves of the form Pa,b, and where
two irreducible components meet at an orbifold point. We further extend this approach to allow for
the irreducible components to have non-trivial generic stabiliser, although the arguments in [LP17]
carry over to our situation with only minor alterations.

Let C be as in Theorem 2 and choose a compatible gerbe structure on each irreducible component,
meaning that the local model about qi,˘ is compatible with the maps ψi,˘. This can always be done
by taking the root of a line bundle on Pri,´,ri,` whose restriction under (A.4) yields short exact
sequences compatible with the action of the isotropy group at the nodes. Two compatible gerbe
structures on an irreducible component will differ by how the two patches are identified on overlaps,
but by (A.8), this does not affect our theory. To ease notation, we let Pi “ Pri,´,ri,` be the rigidified

ith irreducible component of C. Let

π : rC “
n
ğ

i“1

rCi Ñ C

be the normalisation map, and Hi the isotropy group at the node qi “ |Ci| X |Ci`1|, and H0 and Hn

the isotropy groups of the points q1,´ and qn,`, respectively, in the chain case. At the points qi,`
and qi`1,´, there are, by construction, short exact sequences

1 Ñ µdi Ñ Hi,`
ψi,`
ÝÝÝÑ µri,` Ñ 1, and (9)

1 Ñ µdi`1
Ñ Hi`1,´

ψi`1,´
ÝÝÝÝÑ µri`1,´ Ñ 1. (10)
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There are (non-canonical) isomorphisms Hi » Hi,` » Hi`1,´, although by choosing the repre-
sentatives of (9) and (10) such that ψi,` (resp. ψi`1,´) are as in Theorem 2, one can take these
identifications to be the identity. This yields the local model of qi.

Remark 2.2. It should be emphasised that, even when it would make sense, we do not require that
the short exact sequences (9), (10) are equivalent such that Hi,` » Hi`1,´ via the identity map,
only that the groups Hi,` and Hi`1,´ can be identified with Hi.

Recall that the ideal sheaf of a closed substack is the sheaf which pulls back to the ideal sheaf of
the preimage in any atlas. As such, we define

I “
n
à

i“1

πi˚O
rCip´qi,´ ´ qi,`q

for a cycle of curves, and analogously for a chain. Here πi : rCi Ñ C is again the natural projection.
We let F be as in (6) and AC be as in (7). For any integers j, m, and k P t0, . . . , di ´ 1u, we define
distinguished AC-modules

Pipj,m, kq “

˜

πi˚
`

O
rCipjqi,´ `mqi,`q bNbk

i

˘

πi˚
`

O
rCipjqi,´ `mqi,`q bNbk

i

˘

¸

.

For fixed integers j, m, and 0 ď k ď di ´ 1, let Excipj,m, kq be the collection

Pipj,m, kq Pipj ` 1,m, kq . . . Pipj ` ri,´ ´ 1,m, kq Pipj ` ri,´,m, kq

Pipj,m, kq Pipj,m` 1, kq . . . Pipj,m` ri,` ´ 1, kq Pipj,m` ri,`, kq

xi xi xi xi

yi yi yi yi

(11)
Note that by the decomposition (A.8), we have that Pipj,m, kq is orthogonal to Pi1pj1,m1, k1q unless
k “ k1. With this, it follows directly from the proof of [LP17, Lemma 1.2.1] that the modules
Pipj,m, kq are exceptional, and Excipj,m, kq is an exceptional collection for any fixed j, m, and
k P t0, . . . , di ´ 1u. In the case of di “ 1 we omit k from the notation.

As in the non-stacky and orbifold cases we also define simple modules at each node, given by

Sq “
ˆ

0
Oq

˙

.

Fixing an identification of the isotropy group of the node qi “ |Ci| X |Ci`1| with Hi (for i
counted modulo n in the cycle case), let ψi,` and ψi`1,´ be as in Theorem 2 and fit into the
short exact sequences (9) and (10), respectively. We have that locally, around qi, we can view AC–
modules as equivariant Hi modules on SpecCrx, ys{pxyq “ SpecS, where the Hi action is given by
h ¨ px, yq “ pψi,`phqx, ψi`1,´phqyq. We fix the µri`1,´ action on the fibre of the sheaf OPi`1p´qi`1,´q

at qi`1,´ to be via its natural character, and similarly for the action of µri,` on the fibre of the sheaf
OPip´qi,`q at qi,`. Moreover, we define the character corresponding to the weight of the action of
Hi on the fibre of O

rCi`1
p´qi`1,´q to be the character induced from the natural character of µri`1,´

under the dual of ψi`1,´, and we call this χri`1,´ . We define χri,` similarly as the character of Hi

induced by the natural character under the dual of ψi,`. For the chosen gerbe structure, choose
χdi,˘ such that di,˘χdi,˘ “ χri,˘ as in Appendix A.

Since Hi is diagonalisable (is isomorphic to a closed subgroup of an algebraic torus), we have an
eigenspace decomposition of an Hi-equivariant S-module M as

M “
à

χP pHi

Mχ,
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where pHi is the group of characters of Hi. Furthermore, for any χ P pHi there is a twisting operation
M ÞÑMtχu which identifies the γ-eigenspace of Mtχu with the pχ` γq-eigenspace of M .

For a chain (resp. cycle) of nodal stacky curves, consider a tuple of characters χ “ pχ0, . . . , χn`1q P

pH0 ‘ ¨ ¨ ¨ ‘ pHn`1 (resp. χ “ pχ1, . . . , χnq P pH1 ‘ ¨ ¨ ¨ ‘ pHn). We call such a tuple admissible if there

exists a line bundle O
rCipjqi,´`mqi,`qbNbk

i on each rCi such that Hi´1 acts on the fibre at qi,´ with

character χi´1 and Hi on the fibre at qi,` with character χi. Denote by pHad the set of admissible

characters. It is not true that pHad contains any tuple of characters; however, for any character

χ P pHi there is a tuple in pHad such that χi “ χ. For each admissible χ, we define the sheaf Mtχu
by gluing the line bundles of the above form together at the nodes.

Consider the map p : C Ñ C, where C is the coarse moduli space of the stacky curve, i.e. is
a chain or cycle of P1 joined nodally. Following [OS02], we call a sheaf E on C an generator of
QCohpCq with respect to p if the natural map

p˚pp˚HomOCpE ,Gqq b E Ñ G

is a surjection for any G.

Lemma 2.3. The sheaf
à

χP pHad

Mtχu

is a generator of QCohpCq with respect to p.

Proof. Let x be a point of C, considered as a map x : SpecCÑ C. Let Gx be its isotropy group, and
denote by x̃ : BGx Ñ C the corresponding natural map. Then, [OS02, Theorem 5.2] stipulates that
if E is a locally free sheaf such that x̃˚E contains every irreducible representation of Gx for every
geometric point x, then E is a generator of QCohpCq with respect to p.

From the fact that for each χ P pHi there is a χ P pHad such that χi “ χ, it is clear that the fibre of
À

χMtχu at any nodal point (as well as at q1,´ and qn,` in the chain case) contains every irreducible

representation of Hi. Since χdi pushes down to a generator of Z{di, the fibre of
À

χMtχu at a point
whose isotropy group is µdi contains every irreducible representation of µdi , and this establishes the
claim. �

To calculate the morphisms between the modules Sqi , and their twists Sqitχu for χ P pHi, with
the Pipj,m, kq, we can work locally in the patch U “ SpecS, as above, and consider Hi equivariant
AU -modules. We begin by observing that, as in the non-stacky and orbifold cases, the only relevant
Ext-class is given by the short exact sequence of AU -modules

0 Ñ

ˆ

I
I

˙

Ñ

ˆ

I
OU

˙

Ñ Sqi Ñ 0, (12)

and that this class is Hi-equivariant. Therefore, we have morphisms

Ext1pSqi ,Pipj,m, 0qq “ aipm, 0q

Ext1pSqi ,Pi`1pj,m, 0qq “ bipj, 0q

for any m ” ´1 mod ri,`, and j ” ´1 mod ri`1,´, respectively. Consider Mtχu such that the
character at qi is χi. It is clear that we have

Sqi bMtχu » Sqitχiu.

In particular, as in (A.6), we have that for each χ P pHi, and any mi, ji, mi`1, ji`1 P Z, there
exists m P tmi, . . . ,mi ` ri,` ´ 1u, k` P t0, . . . di ´ 1u and j P tji`1, . . . , ji`1 ` ri`1,´ ´ 1u, k´ P
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t0, . . . , di`1 ´ 1u such that Hi acts on the fibres of the sheaves

O
rCipmqi,`q bNbk`

i ,

O
rCi`1
pjqi`1,´q bNbk´

i`1

at qi,` and qi`1,´, respectively, with character χ.

By twisting the sequence (12) by Mtχu, we obtain morphisms

Ext1pSqitχu,Pipji,m0 `m, k`qq “ C ¨ aipm, k`q, and

Ext1pSqitχu,Pi`1pj0 ` j,mi`1, k´qq “ C ¨ bipj, k´q,
(13)

for each χ P pHi, where m0 P tmi, . . . ,mi ` ri,` ´ 1u is a distinguished element such that
m0 ” ´1 mod ri,`, and pm, k`q as above solves

´mχri,` ` k`χdi,` “ χ, (14)

j0 P tji`1, . . . , ji`1`ri`1,´´1u is a distinguished element such that j0 ” ´1 mod ri`1,´, and pj, k´q
as above solves

´jχri`1´ ` k´χdi`1,´ “ χ. (15)

Now, we have constructed a full, strong exceptional collection consisting of the objects:

‚ For any fixed ji, mi P Z, and each irreducible component, being a µdi-gerbe over Pi, the
collections

di´1
à

k“0

Excipji,mi, kq,

‚ For each node qi “ |Ci| X |Ci`1|, the objects

Sqitχku for each χk P pHi.

The endomorphism algebra of this collection is generated by the morphisms xi, yi in (11), as well
as the morphisms given by (13). The relations are ya “ 0 and xb “ 0 whenever the composition is
possible. The proof of this, as well as the claim that the collection is full and strong, can be seen
from following through the proof of [LP17, Theorem 1.2.3] mutatis mutandis (cf. [BD09, Theorem
9]). Of course, the resulting category DbpAC ´ modq only depends on the parameters stated in
Theorem 2, ultimately for the same reason as Db CohpCq does.

3. The partially wrapped Fukaya category

Partially wrapped Fukaya categories were first defined by Auroux in [Aur10] and further developed
by Sylvan in [Syl16]. In this section, we briefly recount the construction of the surfaces under
consideration ([Hab22, Section 3.2]) as well as the strategy of [HKK14] for computing the partially
wrapped Fukaya category of a graded symplectic surface.

3.1. Gluing annuli. LetAp`, r; dq denote d annuli, each with r ordered marked points, p`rk, . . . p
`

rpk`1q´1,

on the first boundary component, and ` ordered marked points, p´`k, . . . , p
´

`pk`1q´1, on the second

boundary component, which have been placed in a column. Here k P t0, . . . , d´ 1u refers to which
annulus the marked points are on, where we count top-to-bottom. We visualise this as d disjoint
rectangles which have been placed in a column, each rectangle has top and bottom identified, and
with the left boundary components containing the points p´`k`i and the right boundary components

containing the points p`rk`i. The reasoning for the labelling is that we would like to keep track of
where the marked points are on each individual annulus, as well as where each marked point is on
the left (respectively right) side of the column of annuli with respect to the ordering p´0 , . . . , p

´
di`i´1

(respectively p`0 , . . . , p
`
diri´1).
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Given a collection of annuli

Ap`1, r1; d1q, . . . , Ap`n, rn; dnq,

such that ridi “ `i`1di`1, and corresponding permutations σi P Sdiri , we can glue these annuli
together in the following way. For each j P t0, . . . , diri ´ 1u, we glue a small neighbourhood around
the stop p`j in Ap`i, ri; diq to a small neighbourhood around the stop p´σipjq in Ap`i`1, ri`1; di`1q by

attaching a strip. We call such a gluing circular if Ap`n, rn; dnq is glued back to Ap`1, r1; d1q, and
in this case we count i mod n – see Figure 1 for an example. Otherwise, we call a gluing linear,
and take i P t1, . . . , nu. In the case of linear gluing we refer to the left boundary components of
Ap`1, r1, d1q and the right boundary components of Ap`n, rn, dnq as the left and right distinguished
boundary components, respectively.

For each i, the number of boundary components arising from gluing the ith and pi` 1qst columns
can be computed as follows. Consider the permutations

τri “
`

0, ri ´ 1, ri ´ 2, . . . , 1
˘`

ri, 2ri ´ 1, 2ri ´ 2, . . . , ri ` 1
˘

. . .
`

pdi ´ 1qri,miri ´ 1, . . . , pdi ´ 1qri ` 1
˘

and

τ`i “
`

0, 1, . . . , `i`1 ´ 1
˘`

`i`1, . . . , 2`i`1 ´ 1
˘

. . .
`

pdi`1 ´ 1q`i`1, . . . , di`1`i`1 ´ 1
˘

.

The number of boundary components between the ith and pi ` 1qst columns will then be given by
the number of cycles in the decomposition of σ´1

i τ`i`1
σiτri P Smiri . Note that if di “ di`1, then

we have τri “ τ´1
`i`1

, and we simply get the commutator. When there is no risk of confusion we will

simply refer to the surface which has been constructed as Σ.

To compute the homology groups of Σ, one can construct a ribbon graph

Γp`1, . . . , `n; r1, . . . , rn;m1, . . . ,mn;σ1, . . . , σnq Ď Σ, (16)

on to which the surface deformation retracts. To do this, let there be a topological disc D2 for each
of the annuli. For each disc, attach a strip which has one end on the top, and the other end on
the bottom. Then, attach a strip which connects two discs if there is a strip which connects the
corresponding annuli. These strips must be attached in such a way as to respect the cyclic ordering
given by the gluing permutation. One can then deformation retract this onto a ribbon graph, whose
cyclic ordering at the nodes is induced from the ordering of the strips on each annulus. If there is
no ambiguity, we will refer to this graph as ΓpΣq.

Since the embedding of ΓpΣq in to Σ induces an isomorphism on homology, the homology groups
of Σ can be easily computed. Namely, since the graph is connected, we have H0pΣq “ Z. For circular
gluing we have χpΣq “ V ´ E “ rkH0pΣq ´ rkH1pΣq “ ´

řn
i“1 ridi, and for linear gluing we have

χpΣq “ ´
řn´1
i“1 ridi, yielding H1pΣq “ Zp1´χq in both cases. A basis for the first homology of the

graph is given by an integral cycle basis, and so the basis of the first homology for Σ is given by
loops which retract onto these cycles.

A Z-grading of the surface is given by a homotopy class of (unorientated) line field, as explained
in [Sei08, Section 13(c)], and a Lagrangian is gradable with respect to this line field if and only
if its winding number is zero. Note that in the case where the winding number with respect to a
given line field vanishes on each embedded Lagrangian in a basis of the first homology of Σ, the
homotopy class of the line field is unique. In the remainder of this paper, we will only consider
the case where the line field used to grade the surface is given by the horizontal line field on each
annulus, and is parallel to the boundary components on each attaching strip. With this, we see
that the line field comes from the projectivisation of a vector field by the same proof as in [LP20,
Lemma 4.1.1]. With such a description of a surface, it is possible to determine when two surfaces
are graded symplectomorphic ([LP20, Corollary 1.2.6]); however, in order to do this one must (in
many cases) compute the Arf invariant. Whilst this is theoretically simple, it is computationally



HOMOLOGICAL MIRROR SYMMETRY FOR NODAL STACKY CURVES 11

Figure 1. A genus 5 surface with 4 boundary components constructed by gluing
Ap2, 4; 2q to Ap4, 2; 2q via the permutations σ1 “ p

0 1 2 3 4 5 6 7
0 2 4 6 1 3 5 7 q and σ2 “ p

0 1 2 3
2 0 3 1 q.

intractable to do in generality without imposing restrictions on the form of the gluing permutations
being considered, as in [LP20, Section 4.3], or [Hab22, Section 4.3].

3.2. Computation of the partially wrapped Fukaya category. Once we have constructed the
surfaces in question, our approach to mirror symmetry involves computing the partially wrapped
Fukaya category via the method given in [HKK14].

Given a surface with non-empty boundary, Σ, and a collection of stops on its boundary Λ, [HKK14,
Section 3] shows that if tLiu is a collection of pairwise disjoint and non-isotopic Lagrangians such
that Σz

`

\i Li
˘

is topologically a union of discs, each of which with exactly one marked point on its
boundary, then the Li generate WpΣ; Λq. Moreover, it is also shown that the total endomorphism
algebra of the generators is formal, and can be described as the algebra of a quiver with monomial
relations. A connection to the representation theory of finite dimensional algebras is given by the
observation that the endomorphism algebra of such a generating collection of objects is gentle, a
class of finite dimensional algebras first introduced in [AS87]. These continue to be of interest to
representation theorists, particularly for their relationship with Fukaya categories of surfaces – see,
for example, [OPS18], [APS19].

To construct the partially wrapped Fukaya category, it was shown that there exists a ribbon
graph dual to the collection of Lagrangians. This graph has an n´valent vertex at the centre of
each 2n-gon cut out by the Lagrangians, and the half edges connect two vertices if that edge is
dual to a Lagrangian on the boundary of both of the corresponding discs. The cyclic ordering is
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induced from the orientation of the surface. From this, it was shown in [HKK14, Theorem 3.1] that
the partially wrapped Fukaya category is given as the global sections of a constructible cosheaf of
A8-categories on the ribbon graph. In particular, for each n-valent vertex at the centre of a 2n-gon,
there is a fully faithful inclusion functor

WpD2;n` 1q ÑWpΣ; Λq, (17)

where WpD2;n ` 1q is the partially wrapped Fukaya category of the disc with n ` 1 stops on its
boundary.

The two prototypical examples from which our strategy is built are the disc with m points on its
boundary, as well as the cylinder with a stops on one boundary, and b stops on the other. Consider
the disc with m stops on its boundary, and m´ 1 Lagrangians, L1, . . . , Lm´1 supported near these
stops, as in Figure 2. The morphisms between Lagrangians is given by the Reeb flow along the
boundary of the disc in the anticlockwise direction. Let ai : Li Ñ Li`1 be such a morphism, and
observe that ai`1ai “ 0 for i “ 1, . . . ,m´ 2. It is clear that the endomorphism algebra of the direct
sum

Àm´1
i“1 Li is the Am´1 quiver with relations given by disallowing any composition.

m

L1
1

L2

2

Lm´2

m´ 2 Lm´1

m´ 1

L‚

Figure 2. A collection of generating Lagrangians for D2 with m stops. The Reeb
flow is in the counterclockwise direction.

There are two key facts about the collection of Lagrangians L1, . . . , Lm´1. The first is that the
Lagrangian Lm is quasi-isomorphic to the twisted complex

L1rm´ 2s L2rm´ 3s . . . Lm´2r´1s Lm´1. (18)

This is first observed in [HKK14, Section 3.3], and will be important later in our localisation argu-
ment. The second key observation is that the complement D2z

`

\
m´1
i“1 Li

˘

is a collection of topological
discs, each with exactly one marked point on the boundary. Therefore, the collection tL1, . . . , Lm´1u

generates the partially wrapped Fukaya category WpD2;mq.

The second fundamental example which forms the cornerstone of our strategy is the annulus, A,
with a stops on one boundary component, and b on the other. A generating collection of Lagrangians
on such an annulus is given in Figure 3, and its corresponding quiver in Figure 4. Observe that the
quiver algebra of the generators for the single annulus with a stops on one boundary component
and b on the other matches precisely the quiver algebra of the exceptional collection of Pa,b given in
(A.7). This establishes that

WpA; a, bq » Db CohpPa,bq,

and this observation is at the heart of our strategy.
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P˘0

P´‚

P´a´1

P´a

P`1

P`‚

P`b´1
P`b

Figure 3. A collection of generat-
ing Lagrangians for Apa, b; 1q. Top
and bottom identified.

P´0 P´1 . . . P´a´1 P´a

P`0 P`1 . . . P`b´1 P`b

x1 x2 xa´1 xa

y1 y2 yb´1 yb

Figure 4. Quiver for Apa, b; 1q.

3.2.1. Circular Gluing. Here we compute the partially wrapped Fukaya category for columns of
annuli glued circularly, with notation as in Section 3.1. To begin with, we add two stops on each
attaching strip – one on the top, and one on the bottom. We will refer to this collection as Λ. On
the kth annulus in the ith column we have a collection of Lagrangians P i,k of the same form as in
Figure 3. This collection consists of the objects

tP`i,0,k, P
`
i,1,k, . . . , P

`
i,ri,k

, P´i,0,k, . . . P
´
i,`i,k

u.

The morphisms within this collection are of the same form as in Figure 4. For each attaching
strip, we consider a Lagrangian which spans it in such a way that the two stops are in the clock-
wise direction of its endpoints. We label the Lagrangian which spans the attaching strip beginning
at the neighbourhood around the jth stop between the ith and pi ` 1qst columns by Si,j . Here
j P t0, . . . , rimi ´ 1u and i P Z{n.

As well as the morphisms within each collection P i,k, if we write j “ k`ri ` c` and σpjq “
k´`i`1`c´ for k` P t0, . . . , di´1u, c` P t0, . . . , ri´1u, k´ P t0, . . . di`1´1u, and c´ P t0, . . . , `i`1´1u,
we also have morphisms

ai,j : Si,j Ñ P`i,c`,k`

bi,j : Si,j Ñ P´i`1,`i`1´1´c´,k´
.

By construction, the complement of this collection of Lagrangians is the disjoint union of hexagons,
each with exactly one stop on its boundary. Therefore, we have that the collection of Lagrangians
consisting of all of the P i,k, as well as the Si,j is a generating collections of Lagrangians for WpΣ; Λq.

3.2.2. Linear Gluing. The case of linear gluing is almost identical to that of circular gluing; however,
the first and last columns are now no longer glued to each other. Due to this, we include the stops
on the distinguished boundary components in Λ, although we allow the number of stops on the
distinguished boundary components to be empty. In dividing the surface into topological discs for
the computation of the partially wrapped Fukaya category, observe that a topological disc with a
Lagrangian Si,j on its boundary is a hexagon, as in the circular gluing case, and a quadrilateral
otherwise. The generating collection is again given by all of the P i,k, as well as the Si,j . See Figure
5 for an example, where its corresponding quiver is given in Figure 6.

4. Localisation

As mentioned in the introduction, there are natural localisation functors on the A– and B–
sides. The strategy to establishing Theorem 3 is to show that the quasi-equivalence in Theorem 2
intertwines localisation on both sides. In this section, we describe the localisation functors on the
A– and B–sides before establishing Theorem 2. As in the construction of Auslander orders, this is
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P˘1,0,0

P`1,1,0

P`1,2,0

P´1,1,0

P´1,2,0

P˘1,0,1

P`1,1,1

P`1,2,1

P´1,1,1

P´1,2,1

S1,0

S1,2

S1,1

S1,3

P´2,1

P´2,2

P´2,3

P´2,4

P˘2,0

P`2,1

P`2,2

P`2,3

Figure 5. Generating collections of Lagrangians for linear gluing of Ap2, 2; 2q to
Ap4, 3; 1q via σ1 : p0, 1, 2, 3q ÞÑ p0, 2, 1, 3q. Top and bottom of each annulus is identi-
fied.

P´1,0,0 P´1,1,0 P´1,2,0 P´1,0,1 P´1,1,1 P´1,2,1

P`1,0,0 P`1,1,0 P`1,2,0 P`1,0,1 P`1,1,1 P`1,2,1

S1,0 S1,1 S1,2 S1,3

P´2,4 P´2,3 P´2,2 P´2,1 P´2,0

P`2,3 P`2,2 P`2,1 P`2,0

x1,1,0 x1,2,0 x1,1,1 x1,2,1

y1,1,0 y1,2,0 y1,1,1 y1,2,1

a1,0

b1,0

a1,1

b1,1

a1,2

b1,2

a1,3

b1,3

x2,4 x2,3 x2,2 x2,1

y2,3 y2,2 y2,1

Figure 6. Quiver describing the endomorphism algebra of the generating collection
of Figure 5. Relations given by xb “ 0 and ya “ 0.

only a mild generalisation of the orbifold case studied in [LP17], and we include only the relevant
alterations in the argument.

4.1. Localisation on the B–side. As in the non-stacky case, we consider the functor

HomApF ,´q : AC ´mod Ñ Coh C, (19)
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and construct a subcategory T on which this functor vanishes. We again work locally, and so the
analysis follows from the non-stacky case by working equivariantly, as is demonstrated in the orbifold
case [LP17, Section 3.2]. Note that this functor is exact since F is a summand of AC , so is locally
projective.

In order to construct T , we define the modules

rSipj, kq˘ “

˜

πi˚pO
rCipjqi,˘q bNbk

i q|q

πi˚pO
rCipjqi,˘q bNbk

i q|q

¸

,

where q “ πipqi,˘q. These modules fit into the short exact sequences

0 ÝÑ Pipj ´ 1,m, kq ÝÑ Pipj,m, kq ÝÑ rSipj, kq´ ÝÑ 0

0 ÝÑ Pipj,m´ 1, kq ÝÑ Pipj,m, kq ÝÑ rSipm, kq` ÝÑ 0,
(20)

and have support at πipq˘q. When the point qi,˘ is not a node (i.e. the q1,´ and qn,` in the chain

case) we set E˘i pj, kq “ rSipj, kq˘. If qi,˘ is a node, then we have natural inclusions

Sqitχ`u ãÑ rSipm, kq`

Sqi´1tχ´u ãÑ rSipj, kq´,
where χ` (resp. χ´) is the character through which Hi (resp. Hi´1) acts on the fibre of the sheaf

O
rCipmqi,`q bNbk

i (resp. O
rCipjqi,´q bNbk

i ) at qi,` (resp. qi,´). We then define Eipj, kq˘ to fit into

the short exact sequences

0 ÝÑ Sqitχ`u ÝÑ rSipm, kq` ÝÑ Eipm, kq` ÝÑ 0,

0 ÝÑ Sqi´1tχ´u ÝÑ
rSipj, kq´ ÝÑ Eipj, kq´ ÝÑ 0.

As in the orbifold case, we find that the objects Eipj, kq˘ are exceptional unless πipqi,˘q is a smooth
point with no stacky structure. At nodes, this follows from the presentation as a quotient of xy “ 0
by Hi. In this presentation, the relevant Ext-groups are the Hi-invariant classes of the Ext-groups
computed on xy “ 0, and it is shown in [LP17, Lemma 3.2.1] that these groups vanish. In the
case where the point is a smooth point with non-trivial stacky structure, we find that the objects
Eipj, kq˘ are exceptional from the locally projective resolution (20). We define T to be the subcat-
egory formed by direct sums of all the objects Eipj, kq˘ supported at the nodes.

With this we have that T Ď DbpAC ´modq is a Serre subcategory, and identifies

Coh C » AC ´mod{T

Db CohpCq » DbpAC ´modq{xT y.
To see this, note that the derived equivalence follows from the equivalence of abelian categories by
[Miy91]. The equivalence of abelian categories is given for non-stacky curves in [BD09, Theorem 4.8],
and the present situation follows from this. As explained in the orbifold case, [LP17, Proposition
3.2.3], one must check that certain adjunctions are equivalences, and this boils down to checking the
statement locally at nodes. One can then use the presentation at a node as the quotient of xy “ 0
by Hi, and the argument follows from the non-stacky case.

4.2. Localisation on the A–side. Part of the utility of the construction in [HKK14] is that it not
only provides a categorical resolution of the compact Fukaya category of a surface, but also gives
an explicit description of a functor

WpΣ; Λq ÑWpΣ; Λ1q,

where Λ1 is obtained from Λ by removing stops. This map is given by taking the quotient of the
partially wrapped Fukaya category by the category generated by Lagrangians which are supported
near the stops being removed. In particular, by removing all of the stops in the case of circular
gluing, one recovers a map to the wrapped Fukaya category of the surface. In the case of linear
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gluing, the situation is analogous, however, the stops on the distinguished boundary components are
not removed. It is in this context that the quasi-isomorphism (18) and the functor (17) show their
utility by giving the Lagrangian supported near a stop to be removed in terms of the generating
Lagrangians on a disc.

For circular gluing, we will define the object E`i,j (resp. E´i`1,j) to be Lagrangian supported near

the stop on the bottom (resp. top) of the attaching strip beginning at the neighbourhood of the jth

stop on a boundary component between the ith and pi`1qst columns. By again writing j “ k`ri`c`
and σipjq “ k´`i`1 ` c´ for k` P t0, . . . , di ´ 1u, c` P t0, . . . , ri ´ 1u, k´ P t0, . . . di`1 ´ 1u, and
c´ P t0, . . . , `i`1 ´ 1u, we have by (18) and (17)

E`i,j » tSi,jr3s Ñ P`i,c`,k`r2s Ñ P`i,c``1,k`
r1su

E´i`1,j » tSi,jr3s Ñ P´i`1,`i`1´1´c´,k´
r2s Ñ P´i`1,`i`1´c´,k´

r1su.

In the case of linear gluing we have the same iterated cones in for the hexagonal regions, as well as
the cones

E´1,j » tP
´
i,jr2s Ñ P´i,j`1r1su

E`n,j » tP
`
i,jr2s Ñ P`i,j`1r1su.

Proof of Theorem 2. In order to prove the statement, it suffices to match the generators of the
categories in question. We begin with the case of a cycle of curves, or a chain where both r1,´, rn,` ą
0. On the B–side, we fix an exceptional collection such that ji “ 0 and mi “ ´1. We again label

the characters in pHi such that χk`ri,``m is the character of O
rCipmqi,`q bNbk`

i . On the A–side we

construct the candidate mirror as follows: For each irreducible component Ci of C, being a µdi-gerbe
over Pri,´,ri,` , we consider a column of annuli Apri,´, ri,`; diq. Let j, k´ solve

´jχri`1,´ ` k´χdi`1,´ “ χk`ri,``m,

as in (15). We then define the permutation σi to be given by

k`ri,` `m ÞÑ k´ri`1,´ ` p´jq mod ri`1,´.

Let Σ be the surface constructed in this way, and let WpΣ; Λq be its partially wrapped Fukaya
category, as described in Section 3.2. The identification of the generation objects on both sides is
given by:

P´i,j,k ÐÑ Pipj,´1, kq

P`i,m,k ÐÑ Pip0,m´ 1, kq

Si,j ÐÑ Sitχjur´1s.

From this, we can see that the endomorphism algebras of the two exceptional collections which
generate their respective categories are equivalent, which establishes the claim in this case.

To complete the proof in the case of a cycle of curves, where either or both of r1,´, rn,` “ 0, we
must utilise [LP17, Proposition 3.2.2], which, suitably reworded to our context, states that under
the above equivalence, we have a correspondence

tAC ´modules E´i pj, kqu ÐÑ tE´i,ri,´k`jr´1su (21)

tAC ´modules E`i pm, kqu ÐÑ tE`i,ri,`k`m´1r´1su. (22)

The proof of the alteration of the statement to our situation follows directly from the proof of the
original statement. Namely, we let Exc be the direct sum of the objects in the exceptional collection
in DbpAC ´ modq described in Section 2 and A its endomorphism algebra. One can describe the
right A-modules of the form RHompExc,´q corresponding to the objects E´i pj, kq and E`i pm, kq in
the equivalence

RHompExc,´q : DbpAC ´modq
„
ÝÑ Dbpmod´Aq,
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and see that they match with the objects in Dbpmod´Aq calculated using the presentations of E´i,j
(resp. E`i,j´1) given in Section 4.2.

Now, consider the case of rn,` ą r1,´ “ 0, and define the stack C to be the same curve as C, but

where C1 “ P1,r1,` . Namely, we have C “ Cztq1,´u. Since AC is isomorphic near q1,´ to the matrix
algebra over O, we have that the restriction functor

AC ´mod Ñ AC ´mod

identifies AC´mod with the quotient of AC´mod by the Serre subcategory generated by
Àd1´1

k“0 E1p0, kq
´

(i.e.
Àd1´1

k“0

ˆ

Oq1,´

Oq1,´

˙

bNbk
1 ). By the main result of [Miy91], this yields a derived equivalence

DbpAC ´modq{x
d1´1
à

k“0

E1p0, kq
´y » DbpAC ´modq.

From the first part of the proof, there is a graded surface pΣ,Λq such that

WpΣ; Λq » DbpAC ´modq.

Now, since E´1 p0, kq is identified with E´1,kr´1s in (21), removing the stops on the left distinguished

boundary corresponds to localising DbpAC ´ modq by the category generated by
Àd1´1

k“0 E1p0, kq
´,

which yields the result. The cases of r1,´ ą rn,` “ 0 or r0,´ “ rn´1,` “ 0 are analogous. �

Remark 4.1. Choosing different values for mi and ji in the above theorem corresponds to changing
the identification of the cylinders on the A–side by a cyclic reordering. This yields homeomorphic
mirrors, since cyclically changing the identification of an individual annulus, and/ or reordering the
annuli in a column, does not change the number of cycles, or their length, in the cycle decomposition
determining the topology of the surface.

5. Characterisation of perfect derived categories

In order to establish the statement about perfect objects in Theorem 3, one must show that
the compact Fukaya category and derived category of perfect complexes, considered as full sub-
categories of WpΣ; Λq and DbpAC ´ modq, respectively, are identified with each other under the
quasi-equivalence of Theorem 2. The aim of this section is to characterise perfect complexes on the
A– and B–sides of the correspondence before establishing Theorem 3.

5.1. The derived category of perfect complexes. As in the localisation argument, our strategy
closely follows that of [BD09, Theorem 2] for the non-stacky case. Let C be a cycle or chain of curves
with r1,´, rn,` ą 0, F as in Section 2, and consider the functor

perf C Ñ DbpAC ´modq

G ÞÑ FC bOC G.

In the non-stacky case, it is shown that this functor is full and faithful in [BD09, Theorem 2 (5)],
and this result is generalised to the orbifold case in [LP17, Proposition 4.1.3]. As in these cases,
one can again identify the essential image of perf C in DbpAC ´ modq as the subcategory which is
both left and right orthogonal to the category T defined in Section 4.1. The proof of this follows
verbatim from the proof of [LP17, Proposition 4.1.3 (i)] after replacing µr by H, an extension of µr
by µd. In the case of a cycle of curves with rn,` ą r1,´ “ 0, the category of compactly supported

perfect complexes on C is identified with the category which is both left and right orthogonal to T ,
where this category is formed by the objects of T , together with E1pkq

´ for 0 ď k ď d1 ´ 1. To

prove this, observe that E´1 p0, kq »
ˆ

Oq1,´pkχd1,´q

Oq1,´pkχd1,´q

˙

near q1,´, and so a module in perf C is left or

right orthogonal to
Àd1´1

k“0 E´1 p0, kq if and only if its support does not contain q1,´. Then, the rest
of the proof in this case follows as in [LP17, Proposition 4.1.3 (ii)]. The cases when r1,´ ą rn,` “ 0
and r1,´ “ rn,` “ 0 are considered similarly.
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5.2. Characterisation of the Fukaya category. On the A–side of the correspondence, the char-
acterisation of the Fukaya category as a subcategory of the partially wrapped Fukaya category
remains unchanged from [LP17, Section 4.2]. We briefly recall the argument here, and refer to loc.
cit. for the proof.

Let Ti be the collection of Lagrangians supported near the stops on the ith boundary compo-
nent. It is shown ([LP17, Proposition 4.2.1]) that T Ki “K Ti corresponds to those Lagrangians in
WpΣ; Λq not ending on the ith boundary component. One direction of this argument is clear: if
there is a Lagrangian which is either compact, or does not end on the ith boundary component, then
the intersection with the geometric representatives of Lagrangians supported near the stops can be
taken to be empty. In the other direction, one shows that if a Lagrangian does end on a boundary
component, then there is necessarily a non-trivial morphism at the level of cohomology between
this Lagrangian and a Lagrangian in Ti. In the case where just one endpoint of the Lagrangian
lies on the ith boundary component there is a chain level morphism between the Lagrangian and a
Lagrangian in Ti which is of rank one, so the differential vanishes. In the case where both endpoints
lie on the ith boundary component, the chain level morphism complex between the Lagrangian and
a Lagrangian in Ti is either rank one or two. In the rank one case we again have that the differential
must vanish, and in the rank two case one shows that the differential vanishes by a covering argu-
ment. This shows that any Lagrangian with at least one endpoint on the ith boundary component
cannot belong to T Ki . Checking that a Lagrangian with at least one endpoint on the ith boundary
component cannot belong to KTi is done in the same way.

By summing over the boundary components of Σ we define T “
À

i Ti. Then, [LP17, Corollary
4.2.2] shows:

‚ In the case of a cycle of curves, the subcategory FpΣq ĎWpΣ; Λq coincides with T K “K T ,
where T is the category generated by the objects E˘i,j .

‚ In the case of a chain of curves with r1,´, rn,` ą 0, the subcategory

FpΣ; pr1,´q
d1 , p0qb´d1´dn , prn,`q

dnq Ď WpΣ; Λq coincides with T K “K T , where T is the
category generated by E`i,j for i P t1, . . . , n´ 1u and E´i,j for i P t2, . . . , nu.

Proof of Theorem 3. In the case of a cycle of curves, or a chain where r1,´, rn,` ą 0, the theorem
follows from the observation that the generating objects of the category T on both sides of the
correspondence are identified under the equivalence given in Theorem 2. In the case where rn,` ą

r1,´ “ 0 we again consider C such that C “ Cztq1,´u. Then, the statement follows from using the

characterisation of perf C Ď DbpAC ´modq »WpΣ; Λq as the category which is both left and right

perpendicular to T . �

6. Milnor fibres of invertible curve singularities

Whilst more could be made of examples of mirror symmetry from Theorems 2 and 3, our primary
motivation is in the study of (quotients of) Milnor fibres of invertible curve singularities. Indeed, it
is the ability to handle equivariance on the A–side by dealing with the situation abstractly which
was the impetus for generalising the strategy of Lekili and Polishchuk.
In this section, we establish Theorem 1 by firstly applying Theorems 2 and 3 to the curves ap-
pearing as the B–model of invertible polynomials in two variables. We then show that the surfaces

constructed are graded symplectomorphic to qV {qΓ.

To begin with, recall the definition of invertible polynomials and the maximal symmetry group,
as defined in the introduction. For simplicity, we will restrict ourselves to the case of two variable in-
vertible polynomials, although much of the following is true in generality ([LU22, Section 2], [ET13,
Section 1], [Kra10, Section 3]).
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By construction, the map in (1) fits in to the short exact sequence

1 Ñ C˚ φ
ÝÑ Γw Ñ ker χw{xjwy Ñ 1, (23)

where jw “ pe
2π
?
´1

d1
h , e2π

?
´1

d2
h q generates the cyclic group impφqXkerχw, and is called the grading

element. Recall that a subgroup of Γ Ď Γw of finite index is called admissible if it contains φpC˚q.
For each Γ we denote χ :“ χw|Γ, and define Γ “ kerχ. Note that, by construction, xjwy Ď Γ, and
rkerχw : Γs ă 8. Moreover, such subgroups of finite index containing the group generated by the
grading element are in bijection with finite index subgroups Γ Ď Γw containing impφq.

Given an admissible subgroup Γ Ď Γw of index `, one defines the dual group as in (2). This acts

naturally on A2 through its inclusion in kerχ
qw, and in each case, qΓ “ µ` acts on A2 by

ξ ¨ px, yq “ pξx, ξ´1yq. (24)

This can be checked directly, or deduced from the fact that qΓ is a diagonal matrix in SL2pCq, and
so its two entries must be inverses of each other. Clearly, the only fixed point of this action is the
origin, which is not a point in the Milnor fibre of any invertible polynomial in two variables, and so

the quotient of the Milnor fibre by qΓ is again a manifold.

6.1. Loop polynomials. For a loop polynomial w “ xpy ` yqx, where we take p ě q, we consider
W “ xpy ` yqx` xyz, and the corresponding stack

Zwloop,Γ :“ r
`

W´1p0qzt0u
˘

{Γs,

where we take the action of Γ to be given by its inclusion to Γw. Let ` “ rΓw : Γs and identify
Γ » C˚ ˆ µ d

`
, where d “ gcdpp ´ 1, q ´ 1q. The stack Zwloop,Γ has a natural interpretation as a

codimension one closed substack in the toric DM orbifold r
`

A3zt0u
˘

{Γs. The unique stacky fan
describing this DM orbifold is readily checked to be given by the data of

β : Z3

¨

˝

p´1
`

1´q
` 0

0 q ´ 1 ´1

˛

‚

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Z2 “: N,

and each column corresponds to a ray of the fan Σ. The maximal cones of the fan are given by the
span of any two rays. In general, this is a quotient of weighted projective space by µ d

`
.

Remark 6.1. It is worth noting that we have made a choice in the identification Γ » C˚ ˆ µ d
`
,

and thus how Γ acts on A3zt0u; however, the above fan is independent of this choice. Choosing a
different identification of Γ corresponds to choosing different change-of-basis matrices in the Smith
normal form decomposition of rBQs_ used to calculate its cokernel.

With this description, one can see that C1 “ ty “ 0u Ď Zwloop,Γ
is the closed substack of

r
`

A3zt0u
˘

{Γs corresponding to the ray ρ2 “
1´q
` e1 ` pq ´ 1qe2, and similarly that C3 “ tx “ 0u

is the closed substack corresponding to the ray ρ1 “
p´1
` e1. The quotient fan Σ{ρ2 is given by the

complete fan in Q, and

βpρ2q : Z2

¨

˝

p´ 1 ´1
1´p
` 0

˛

‚

ÝÝÝÝÝÝÝÝÝÝÑ Z‘ Z{p
q ´ 1

`
q “: Npρ2q

This is a µ q´1
`

-gerbe over Pp´1,1, and [FMN10, Theorem 7.24] establishes that there is an isomor-

phism of toric DM stacks

C1 »
q´1
`

c

Op´p´ 1

`
q1,´q{Pp´1,1.
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Similarly, we have an isomorphism of toric DM stacks

C3 »
p´1
`

c

Opq ´ 1

`
q3,`q{P1,q´1.

The curve C2 is always an orbifold, and can be identified with C2 » P q´1
`
, p´1
`

.

Remark 6.2. It is worth reiterating that we are not claiming that the gerbe structures of C1 and
C3 are given as above, only that there is an isomorphism of DM stacks. Due to this, there is some
freedom in the identifications, and we have chosen these for later convenience.

The majority of the analysis in studying the modules over the Auslander sheaf is at q3 “ |C3|X|C1|,
which corresponds to the point r0 : 0 : 1s P |X |. This node is presented as the quotient of xy “ 0 by
the action of µ pp´1qpq´1q

d

ˆ µ d
`

given by

pt, ξq ¨ px, yq “ pt
p´1
d ξ´nx, t

q´1
d ξmyq,

where m,n are Bézout coefficients solving

mpp´ 1q ` npq ´ 1q “ d. (25)

Therefore the gerbe structure of the point q3,` is determined by the cohomology class in Z{ gcdpq´

1, p´1
` q » H2prA1{µq´1s, µ p´1

`
q corresponding to the mod p´1

` reduction of p`´1qpq´1q
` P Z. Similarly,

we have that the gerbe at q1,´ P |C1| is classified by the cohomology class in Z{ gcdpp ´ 1, q´1
` q »

H2prA1{µp´1s, µ q´1
`
q corresponding to the mod q´1

` reduction of p´1
` P Z. The corresponding short

exact sequences at q3,` and q1,´ are

1 Ñ µ p´1
`

ϕ3,`
ÝÝÝÑ µ pp´1qpq´1q

d

ˆ µ d
`

ψ3,`
ÝÝÝÑ µq´1 Ñ 1, and (26)

1 Ñ µ q´1
`

ϕ1,´
ÝÝÝÑ µ pp´1qpq´1q

d

ˆ µ d
`

ψ1,´
ÝÝÝÑ µp´1 Ñ 1, (27)

respectively. Here λ˘, η, and ξ are

λ` “ e
2π
?
´1 `

p´1 , λ´ “ e
2π
?
´1 `

q´1 ,

η “ e
2π
?
´1 d

pp´1qpq´1q , ξ “ e2π
?
´1 `

d ,

and ϕ3,` is the map λ` ÞÑ pη´n
pq´1q`
d , ξ´1q, ψ3,` is pηa, ξbq ÞÑ η

p´1
d
aξ´nb, ϕ1,´ is λ´ ÞÑ pηm

pp´1q`
d , ξ´1q,

ψ1,´ is pηa, ξbq ÞÑ η
q´1
d
aξmb, where m,n are again the Bézout coefficients of (25).

From this description, we have that the group H3 acts on the fibre of O
rC3
p´q3,`q at q3,` with

weight χr3,` “ p
p´1
d ,´nq P Z{p pp´1qpq´1q

d q ‘ Z{pd` q » pH3 for m,n solving (25), and similarly

O
rC1
p´q1,´q at q1,´ is acted on with weight χr1,´ “ p

q´1
d ,mq. The character with which H3 acts on

the fibre of N3 is (non-uniquely) determined by the condition that p´1
` χd3,` “

1´q
` χr3,` , and maps

to a unit in Z{pp´1
` q under the dual of ϕ3,`. The natural choice for this is χd3,` “ ´χr1,´ , and

similarly we choose χd1,´ “ χr3,` .

In pH3, we label the characters such that χk`pq´1q`i “ ´iχr3,` ` k`χd3,` for k` P t0, . . . ,
p´1
` ´ 1u

and i P t0, . . . , q ´ 2u. This is the B–side version of labelling the stops on the right side of the left

column of cylinders top-to-bottom. With this ordering, the sheaf on rC1 whose fibre at q1,´ is acted
on by H3 with character χk`pq´1q`i is given by

O
rC1
pjq1,´q bNbk´

1 ,

where j P t0, . . . , p´ 2u and k´ P t0, . . . ,
q´1
` ´ 1u solves

´jχr1,´ ` k´χd1,´ “ ´iχr3,` ` k`χd3,` . (28)
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A solution to this is readily checked to be given by

k´ “ ´i mod
q ´ 1

`

j “ k` ´
p´ 1

`

X ´i`

q ´ 1

\

mod p´ 1.
(29)

Fixing mi “ ´1 and ji “ 0 as in the proof of Theorem 2, one computes

Ext1pSq3t´iχr3,` ` k`χd3,`u,P3p0, pi´ 1q mod q ´ 1, k`qq “ C ¨ api, k`q, and

Ext1pSq3t´iχr3,` ` k`χd3,`u,P1ppj ´ 1q mod p´ 1,´1, k´qq “ C ¨ bpj, k´q
for j, k´ as in (29).

Consider now the nodes q1 “ |C1| X |C2| and q2 “ |C2| X |C3|. The structure of these nodes is far
more simple, and at q1 we have the node is presented as the quotient of xy “ 0 by the action of
µ q´1

`
given by

t ¨ px, yq “ px, tyq,

and analogously for q2. Therefore, one has pH1 » Z{p q´1
` q and pH2 » Z{pp´1

` q, and χr2,´ and χr2,`
are the identity in Z{p q´1

` q and Z{pp´1
` q, respectively. The character with which H1 acts on the

fibre of N1 at q1,` (resp. on N3 at q3,´) is any unit of pH1 (resp. pH2), and so we choose χd1,` to be
the identity and χd3,´ to be minus the identity in their respective character groups. With this, the
morphisms between objects in the exceptional collection supported at q1 are readily checked to be

Ext1pSq1tcu,P1p0,´1, cqq “ C ¨ ap0, cq

Ext1pSq1tcu,P2pp´1´ cq mod
q ´ 1

`
,´1qq “ C ¨ bp´cq,

and similarly for the morphisms between objects supported at q2.

As the mirror to C, we take the surface given by gluing App ´ 1, 1; q´1
` q, Ap

q´1
` , p´1

` ; 1q and

Ap1, q ´ 1; p´1
` q via the permutations σ1 “ id P S q´1

`
, σ2 “ id P S p´1

`
, and σ3 P S pp´1qpq´1q

`

is given

by

k`pq ´ 1q ` i ÞÑ k´pp´ 1q ` p´jq mod p´ 1

for i, j solving (29). From this, it is clear that one boundary component with winding number ´2 q´1
`

arises from σ1, and similarly that one boundary component with winding number ´2p´1
` arises from

σ2. The number of boundary components, and their winding numbers, arising from σ3 is given by
the number of cycles, and their respective lengths, of σ´1

3 τ`1σ3τr3 . This permutation is given by

k`pq ´ 1q ` i ÞÑ pq ´ 1q
´

pk` ´ 1q mod
p´ 1

`

¯

`

´

i´ 1`
q ´ 1

`

Y

pk` ´ 1q`

p´ 1

]¯

mod q ´ 1

and so there are gcdpq´1, p`q´2
` q “ gcdpp´1, p`q´2

` q cycles, each of length pp´1qpq´1q
gcdp`pq´1q,p`q´2q . There-

fore, gcdpq ´ 1, p`q´2
` q boundary components arise from this gluing, and each has winding number

´2 pp´1qpq´1q
gcdp`pq´1q,p`q´2q .

Putting this all together, we have that the surface constructed, call it Σwloop,Γ, has 2 ` gcdpq ´

1, p`q´2
` q components, and Euler characteristic given by

´χpΣwloop,Γq “
q ´ 1

`
`
p´ 1

`
` gcdpq ´ 1,

p` q ´ 2

`
q
pp´ 1qpq ´ 1q

` gcdpq ´ 1, p`q´2
` q

“
pq ´ 1

`
.

Therefore, the genus is

gpΣwloop,Γq “
1

2`
ppq ´ 1´ gcdp`pq ´ 1q, p` q ´ 2qq.
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Applying Theorem 2 yields a quasi-equivalence

DbpAC ´modq »W
ˆ

Σwloop,Γ; 2
p´ 1

`
,
´

2
pp´ 1qpq ´ 1q

gcdp`pq ´ 1q, p` q ´ 2q

¯gcdpq´1, p`q´2
`

q

, 2
q ´ 1

`

˙

,

and then Theorem 3 establishes quasi-equivalences

Db CohpZwloop,Γq »WpΣwloop,Γq

perf Zwloop,Γ » FpΣwloop,Γq.

In the case of Γ “ Γw, we observe that the graded surface constructed on the A–side is graded
symplectomorphic to the Milnor fibre of the transpose invertible polynomial. To see this, we note
that the above gluing is the same as the gluing permutation of [Hab22, Section 3.2.1], although

where the identification of the cylinders in App ´ 1, 1; q´1
` q here have been rotated ´ 2π

p´1 degrees.

It was established in loc. cit. that the surface glued in this way is graded symplectomorphic to
the Milnor fibre of qw by comparing the corresponding ribbon graphs. Building on this strategy, we

establish a graded symplectomorphism qV {qΓ » Σwloop,Γ by first making a topological identification
via the quotient ribbon graphs, and then deducing that the grading structures match by elimination.

Recall the description of qV as qw´1
ε p´δq for 0 ă δ ! ε given in [HS20, Section 3], where

qwε “ qw ´ εx̌y̌ “ x̌y̌px̌p´1 ` y̌p´1 ´ εq “ x̌y̌w̌.

Firstly, observe that the Morsification chosen is qΓ-equivariant, and so taking the quotient commutes
with Morsifying. Moreover, since the quotient map is an unramified cover and the deformation

retract preserves equivalence classes of the quotient map, the deformation retract which takes qV to
its ribbon graph also commutes with the quotient map. With respect to the classification of critical
points in [HS20, Section 3.1], we refer to neck regions which form by smoothing critical points of
type piq as neck regions of type piq, and the corresponding node in the ribbon graph as a node of
type piq. We refer similarly to neck regions and nodes of type piiq and piiiq. We index the nodes of
type piq and piiq according to the x̌ and y̌ argument of the corresponding critical points, respectively.

Then, the lth node of type piq is identified with the pl ` p´1
` q

th node of type piq under the action of
qΓ. Similarly, the mth node of type piiq is identified with the pm ´

q´1
` q

th node of type piiq. This
partitions the nodes of the ribbon graph.

To understand how qΓ partitions the edges, recall that part of the basis for the first homology

group of qV is given by the Lagrangians lVy̌w̌ (resp. mVx̌w̌ and Vx̌y̌), which were defined as the waist

curves which form in the lth neck region of type piq (resp. the mth neck region of type (ii), and the

neck region of type piiiq) upon smoothing. Since Morsification commutes with the action of qΓ, the

Lagrangians lVy̌w̌ and l` p´1
` Vy̌w̌ become identified in the quotient, and therefore so to do the edges

of the ribbon graph onto which these Lagrangians deformation retract. The analogous statement
for the Lagrangians mVx̌w̌ is also true, and so we see that two loops of the graph are identified with
each other when the corresponding nodes are.

To understand the action of qΓ on the remaining edges, recall that two nodes are connected by an
edge if there is a vanishing cycle which passes through both corresponding neck regions. The cyclic
ordering of the nodes is determined by the argument of the Lagrangian away from the neck regions
which it connects – see, for example, [HS20, Figure 8]. From this, it is clear that edges between
the node of type piiiq and nodes of type piq (resp. type piiq) are identified in the quotient when the
corresponding nodes of type piq (resp. type piiq) are. All that remains is to understand the action of
qΓ on edges which connect the nodes of type piq and piiq. For this, recall ([HS20, Section 3.5]) that

the remaining vanishing cycles which form a basis of the first homology of qV are given by l,mV0 for
l P t0, . . . , p´ 2u, m P t0, . . . , q´ 2u, and these are the Lagrangians which pass through the lth neck

region of type piq and the mth neck region of type piiq. By analysing the action of qΓ on the x̌ and y̌
projections of the Milnor fibre, as given in [HS20, Section 3.3], we see that l,mV0 gets identified with



HOMOLOGICAL MIRROR SYMMETRY FOR NODAL STACKY CURVES 23

l` p´1
`
,m´ q´1

` V0 as it enters the tw̌ “ εu component the Milnor fibre2. Away from the neck regions
which connect it to the smoothings of the tx̌ “ 0u and ty̌ “ 0u components, tw̌ “ εu is an unramified

cover of
 

tu` v “ εuzpBδpε, 0q YBδp0, εqq
(

Ď C2, and so the Lagrangians l,mV0 and l` p´1
`
,m´ q´1

` V0

get identified in the component tw̌ “ εu. Therefore, the edge of the ribbon graph connecting the
lth node of type piq with the mth node of type piiq gets identified with the edge connecting the

pl ` p´1
` q

th node of type piq with the pm ´ q´1
` q

th node of type piiq – see Figure 7 for an example.
Note that this identifies the cyclic ordering of the two nodes in a non-trivial way. Moreover, the

pushforward of the basis of the first homology for the ribbon graph of qV given by the deformation
retract of vanishing cycles spans the first homology of the quotient ribbon graph. Therefore, the

pushforward of vanishing cycles spans the first homology of qV {qΓ. It should be emphasised, however,

that we are making no attempt to precisely describe a basis of Lagrangians on qV {qΓ; we only claim

that the vanishing cycles span the first homology of qV {qΓ. In general, two Lagrangians l,mV0 and
l` p´1

`
,m´ q´1

` V0 are not isotopic in the quotient, but are related by Dehn twists around the waist
curves of the cylinders through which they both pass.

Figure 7. Part of the ribbon graph corresponding to qV for qw “ x̌5y̌ ` y̌5x̌. For
clarity, we have only drawn the edges which form the cycles onto which the vanishing

cycles i,´iV0 for i P t0, 1, 2, 3u deformation retract. In the quotient of qV by qΓ “ µ2,
the two red cycles and two green cycles are identified, and the representatives of the
nodes are given by the blue and yellow nodes (recall arg x̌ “ ´ arg y̌), together with

the node of type piiiq. In the case of qΓ “ µ4, all coloured cycles are identified, and
the blue nodes, as well as the node of type piiiq, are taken as the representative in
the quotient.

Since the cyclic ordering at nodes is identified in a non-trivial way, one must choose a representa-
tive of each equivalence class of nodes to work with a specific ordering. By convention, we will choose
the nodes of type piq corresponding to the neck regions which arise from smoothing the critical points

with argument arg x̌ P t0, 2π
p´1 , . . . ,

2πpp´1´`q
`pp´1q u, and similarly we choose the nodes of type piiq to cor-

respond to the smoothing of the critical points of type piiq with arg y̌ P t0,´ 2π
q´1 , . . . ,´

2πpq´1´`q
`pq´1q u.

Figures 8 and 9 show the cases of qV {qΓ for qV the Milnor fibre of x̌5y̌ ` y̌5x̌ and qΓ “ µ2, µ4, respec-
tively. From this, we see that the surface corresponding to this quotient ribbon graph is given by
gluing App ´ 1, 1; q´1

` q, Ap
q´1
` , p´1

` ; 1q and Ap1, q ´ 1; p´1
` q via the permutations σ1 “ id P S q´1

`
,

σ2 “ id P S p´1
`

, and σ3 P S pp´1qpq´1q
`

, where σ3 is given by

k`pq ´ 1q ` i ÞÑ
`

p´iq mod
q ´ 1

`

˘

pp´ 1q ` pp´ 2´ k` `
p´ 1

`
t
´i`

q ´ 1
uq.

2Note that we are not claiming that this identification is made globally, just that these two Lagrangians agree as
they enter the tw̌ “ εu part of the curve.
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As in the maximally graded case, this only differs from the gluing given for Σwloop,Γ by changing

the identification of the cylinders in the column App´ 1, 1; q´1
` q.

Figure 8. Ribbon graph corresponding to qV {µ2

for qw “ x̌5y̌ ` y̌5x̌.

Figure 9. Ribbon graph

corresponding to qV {µ4

for qw “ x̌5y̌ ` y̌5x̌.

To identify the line field used to grade qV {qΓ, observe that the pushforward of any vanishing cycle

in qV is gradable with respect to the line field which is horizontal on cylinders and parallel to the
edges of the attaching strips, which we denote by η. Indeed, for the waist curves to be gradable, the
only possible line field is the one which is horizontal on cylinders. To see that the pushforward of the
Lagrangians l,mV0 are gradable with respect to η, observe that the pushforward of such a Lagrangian
deformation retracts onto a cycle of the quotient ribbon graph which passes through three nodes,
one each of type piq, piiq, and piiiq. Therefore, the pushforward Lagrangian is characterised by which
attaching strips it passes through, as well as some number of Dehn twists about the waist curves in
the cylinders which the attaching strips connect, and any such Lagrangian is gradable with respect
to η. By the uniqueness (up to homotopy) of the line field with respect to which the pushforward of

the vanishing cycles of qV are all gradable, the line field on qV {qΓ is homotopic to η. This completes
the proof of Theorem 1 in the case of loop polynomials.

6.2. Chain polynomials. For a chain polynomial w “ xpy` yq we consider W “ xpy` yq ` xyz,
and Γ Ď Γw of index ` with identification Γ » C˚ ˆ µ d

`
, where d :“ gcdpp, q ´ 1q. We define the

corresponding stack

Zwchain,Γ :“ r
`

W´1p0qzt0u
˘

{Γs,

where Γ acts by its inclusion into Γw. This stack has two irreducible components – the first is
C2 “ txp ` yq´1 ` xz “ 0u » P pp´1qpq´1q

`
, q´1
`

, and the second we identify with a µ q´1
`

-gerbe over

P1,p´1 as follows: We identify C1 as the closed substack of Zwchain,Γ corresponding to the divisor
ty “ 0u. Analogously to the loop case, we see that the quotient stack rpA3zt0uq{Γs corresponds to
the stacky fan given by the data of a morphism

β : Z3

¨

˝

1 1´ q 1

0 pp´1qpq´1q
` ´

p
`

˛

‚

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Z2 “: N,

and the rays of the fan Σ correspond to the column vectors. The maximal cones of the fan are given
by the span of any two rays. In general, this is a quotient of weighted projective space by µ d

`
.
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With this description, we see that C1 is the closed substack corresponding to the ray ρ2 “ p1 ´

qqe1 `
pp´1qpq´1q

` e2, and so C1 is given by the quotient fan consisting of the complete fan in Q,

N “ Z‘ Z{
`

q´1
`

˘

, and

β : Z2

˜

p´ 1 ´1
´
p
` 0

¸

ÝÝÝÝÝÝÝÝÝÝÑ Z‘ Z{
`q ´ 1

`

˘

.

Again, by [FMN10, Theorem 7.24], we see that there is an equivalence of toric DM stacks

C1 »
q´1
`

c

Op´p
`
q1,´q{Pp´1,1.

As in the loop case, the computation of the morphisms in the exceptional collection is done locally.
To this end, consider a local presentation of the node q2 “ |C2| X |C1| “ r0 : 0 : 1s. This is given by
the quotient of xy “ 0 by the action of µ pp´1qpq´1q

`

given by

t ¨ px, yq “ ptx, tq´1yq.

This yields χr1,´ “ q ´ 1 and χr2,` “ 1. Therefore, the presentation of the gerbe C1 at q1,´ is

determined by the class of p
` mod q´1

` P Z{ gcdpp ´ 1, q´1
` q » H2prA1{µp´1s, µ q´1

`
q. This gives the

short exact sequence

1 Ñ µ q´1
`

ãÑ µ pp´1qpq´1q
`

^q´1

ÝÝÝÑ µp´1 Ñ 1.

The action of H2 on N1 at q1,´ is such that q´1
` χd1,´ “

p
`χr1,´ in Z{p pp´1qpq´1q

` q “ pH2, and a natural

choice for this character is χd1,´ “ 1. We order the characters in pH2 such that χc “ ´c. With this

ordering, the sheaf on rC1 whose fibre at q1,´ is acted on by H2 with character χc is given by

O
rC1
pjq1,´q bNbk´

1 ,

where

k´ “ ´c mod
q ´ 1

`

j “ ´
p

`
t
´c`

q ´ 1
u mod p´ 1.

(30)

From this, one can see that we have the following morphisms in the exceptional collection:

Ext1pSq2tχcu,P2p0, c´ 1qq “ C ¨ a2pcq

Ext1pSq2tχcu,P1pp´1´ jq mod p´ 1,´1, k´qq “ C ¨ b2p´j, k´q

for j, k´ as in (30).

As in the loop case, the analysis of the node q1 “ |C1|X|C2| is determined by the choice of χd1,´ . In

particular, we have pH1 “ Z{p q´1
` q, χr2,´ “ 1, and take χd1,` “ ´1. We again order the elements of

pH2 such that χc “ ´c, and with this we have the following morphisms in the exceptional collection:

Ext1pSq1tχcu,P1p0,´1, cqq “ C ¨ a1p0, cq

Ext1pSq1tχcu,P2ppc´ 1q mod
pp´ 1qpq ´ 1q

`
,´1qq “ C ¨ b1pcq.

To construct the mirror to this curve, we glue together two columns, App´1, 1; q´1
` q andAp q´1

` , pp´1qpq´1q
` ; 1q

via the permutation σ1 “ id P S q´1
`

gluing the first column to the second, and the permutation

σ2 P S pp´1qpq´1q
`

given by

c ÞÑ k´pp´ 1q ` p´jq mod p´ 1
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for k´, j as in (30) gluing the second column back to the first. From this, it is clear that there is

one boundary component arising from the first gluing, and this has winding number ´2 q´1
` . From

the second gluing, we have that σ´1
2 τ`1σ2τr2 is given by

c ÞÑ c´ q,

and so there are gcdpq, p`q´1
` q boundary components, each with winding number ´2 pp´1qpq´1q

gcdp`q,p`q´1q .

Putting this all together, we have constructed a surface, call it Σwchain,Γ, which has 1`gcdpq, p`q´1
` q

components, Euler characteristic

´χpΣwchain,Γq “
ppq ´ 1q

`
,

and genus

gchain “
1

2`
ppq ´ p` `´ gcdp`q, p` q ´ 1qq.

Applying Theorem 2 yields a quasi equivalence

DbpAZwchain,Γ
´modq »W

ˆ

Σwchain,Γ; 2
q ´ 1

`
,
´

2
pp´ 1qpq ´ 1q

gcdp`q, p` q ´ 1q

¯gcdpq, p`q´1
`

q
˙

.

Applying Theorem 3 yields

Db CohpZwchain,Γq »WpΣwchain,Γq,

perf Zwchain,Γ » FpΣwchain,Γq.

In the case of maximally graded chain polynomials, observe that the above description differs from
that of [Hab22, Section 3.2.2] only by a rotation of the identification of the left boundary of the
first annulus in the first column. Therefore, the surface constructed in the maximally graded case
is graded symplectomorphic to the Milnor fibre of qw in the maximally graded case. In the case of

` ą 1, we follow the same strategy as in Section 6.1 to deduce that qV {qΓ is graded symplectomorphic
to Σchain,Γ, and this establishes Theorem 1 in the case of chain polynomials.

6.3. Brieskorn–Pham polynomials. The case of Brieskorn–Pham polynomials is covered in [LP17],
although we include it here for completeness. For each Brieskorn–Pham polynomial w “ xp ` yq,
we consider W “ xp ` yq ` xyz, and Γ Ď Γw a subgroup of index ` containing the group generated
by the grading element with identification Γ » C˚ ˆ µ d

`
. As in the previous cases, we define

ZwBP,Γ “ rpW
´1p0qzt0uq{Γs,

where Γ acts by its inclusion into Γw. This stack has one irreducible component, whose coarse moduli

space is a nodal rational curve, and the normalisation is given by rC » P pp´1qpq´1q´1
`

, pp´1qpq´1q´1
`

. We

identify the coordinates in the patch of rC containing q` “ 8 as x, and in the patch containing
q´ “ 0 as y. Therefore, the presentation of C around the node q is given by the quotient of xy “ 0
by H “ µ pp´1qpq´1q´1

`

, where the action is given by

t ¨ px, yq “ ptq´1x, tyq.

Correspondingly, H acts on the fibre of Op´q´q at q´ with weight 1, and with weight q ´ 1 on the
fibre Op´q`q at q`.

In pH “ Z{p pp´1qpq´1q´1
` q, we label the characters such that χc “ ´cpq ´ 1q. Then, for each

c P Z{p pp´1qpq´1q´1
` q, we have the following morphisms in the exceptional collection:

Ext1pSqtχcu,Pp0, c´ 1qq “ C ¨ apcq

Ext1pSqtχcu,Pppcpq ´ 1q ´ 1q mod
pp´ 1qpq ´ 1q ´ 1

`
,´1qq “ C ¨ bpcpq ´ 1qq
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Correspondingly, the mirror surface is given by gluing the annulus Ap pp´1qpq´1q´1
` , pp´1qpq´1q´1

` ; 1q
to itself via the permutation σ P S pp´1qpq´1q´1

`

given by

c ÞÑ ´cpq ´ 1q.

The commutator rσ, τ s P S pp´1qpq´1q´1
`

, where τ is the permutation c ÞÑ c´ 1, is given by

c ÞÑ c´ p.

Correspondingly, the constructed surface, call it ΣwBP,Γ, has gcdpq, p`q` q “ gcdpp, p`q` q boundary

components, each of winding number ´2 pp´1qpq´1q´1
gcdp`q,p`qq . Therefore, the Euler characteristic is

´χpΣwBP,Γq “
pp´ 1qpq ´ 1q ´ 1

`
,

and the genus is

gBP “
1

2`
p2`´ 1` pp´ 1qpq ´ 1q ´ gcdp`q, p` qqq.

Applying Theorem 2 yields

DbpAZwBP,Γ
´modq »W

ˆ

ΣwBP,Γ;
´

2
pp´ 1qpq ´ 1q ´ 1

gcdp`q, p` qq

¯gcdpq, p`q
`
q
˙

,

and applying Theorem 3 yields

Db CohpZwBP,Γq »WpΣwBP,Γq,

perf ZwBP,Γ » FpΣwBP,Γq.

In the maximally graded case, the description of the mirror surface matches that of [Hab22, Section

3.2.3] on-the-nose, and so is graded symplectomorphic to the Milnor fibre of qw. The proof that qV {qΓ
is graded symplectomorphic to ΣwBP,Γ follows as in the loop and chain cases, and this completes
the proof of Theorem 1.

Appendix A. Root stacks

In this appendix, we briefly recall the relevant notions of root stacks and gerbes. This theory is
well studied and developed far beyond the scope of application in this paper; we aim here only to
provide a self-contained account of the relevant aspects of the theory in the context of how we use
it. The notion of a root stack was introduced independently in [Cad07] and [AGV08], to which we
refer to for more details. In addition, the book [Ols16] also provides an excellent exposition.
There are two related notions of a root stack – the first is a way to ‘insert stackiness’ along an effec-
tive Cartier divisor, and the second defines a gerbe structure, which ‘inserts stackiness’ everywhere,
and also keeps track of the generic stabiliser.

Recall that the stack rA1{C˚s is the classifying stack of line bundles with section – this can be
seen by considering a morphism to this stack as a principal C˚-bundle with a global section of the
associated line bundle. To define the root stack of a line bundle with section, consider X a scheme,
L an invertible sheaf on X, s P ΓpX,L q a global section, and r ą 0 an integer. Moreover, let
θr :

“

A1{C˚
‰

Ñ
“

A1{C˚
‰

be the rth power map on both A1 and C˚.

Definition 1 ([Cad07, Definition 2.2.1], [AGV08, Appendix B.2]). Define the stack XpL ,s,rq to be
the fibre product

XpL ,s,rq

“

A1{C˚
‰

X
“

A1{C˚
‰

pr2

pr1 θr

pL ,sq
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This is a Deligne–Mumford stack ([Cad07, Theorem 2.3.3]), and is isomorphic to X away from the
divisor s´1p0q. By construction, XpL ,s,rq comes with a line bundle N and a section t P ΓpXpL ,s,rq, Nq

such that ϕ : Nbr
„
ÝÑ pr˚1L , and ϕptrq “ pr˚1s. Moreover, the construction can be generalised for

when X is a Deligne–Mumford stack.

For an effective Cartier divisor, we will also use the notation XpD,rq to mean XpOXpDq,1D,rq, where
1D is the tautological section vanishing along D. One can iterate this root construction, and for
D “ pD1, . . . , Dnq and ~r “ pr1, . . . , rnq, we define XD,~r to be the root stack defined by iteratively
applying the above construction.

An important example for us will be the following:

Example A.1 ([Cad07, Lemma 2.3.1]). For X “ A1, and D “ r0s, there is an equivalence of categories
XpD,rq »

“

A1{µr
‰

, where µr acts via its natural character.

In fact, Example A.1 can be generalised ([Cad07, Example 2.4.1], cf. [Ols16, Theorem 10.3.10])
to any X “ SpecA and L “ OX , with s P ΓpX,OXq such that D “ s´1p0q, yielding

XpD,rq »
“`

SpecArxs{pxr ´ sq
˘

{µr
‰

,

where µr acts by t ¨ x “ t´1x, and t ¨ a “ ta. In general, any root stack can be covered by such
affine root stacks. For further exposition on root stacks of line bundles with section we refer to the
original references [AGV08], [Cad07], as well as [Ols16, Section 10.3].

The second flavour of root stack defines a gerbe over the original scheme (or stack), and we refer
to [Ols16, Chapter 12] for a definition and further discussion about generalities of gerbes. Gerbes
were originally introduced in [Gir71], and can, roughly speaking, be thought of as a ‘BG-bundle’
over X for some group G. In particular, this means that not only does the isotropy group of each
point contain a copy of G, but the identification of this copy of G in the automorphism group of each
point is a crucial part of the definition. In particular, an equivalence of gerbes is an equivalence of
categories which is compatible with these identifications. Note that this means that two gerbes can
be equivalent as stacks, but inequivalent as gerbes, in analogy with how two principal G-bundles
can have diffeomorphic total spaces, but are not isomorphic G-bundles. For example, principal S3

bundles over S4 are classified by Z‘ Z, and [CE03] establishes an explicit diffeomorphism between
the total spaces of the bundles classified by p1, 1q and p2, 0q. In what follows, we will restrict ourselves
to the case at hand and only consider trivially banded gerbes, which are classified by H2pX,Gq.

Example A.2. If one considers the topological setting, then a good example to have in mind is given
by the observation that any principal S1-bundle is in fact a Z-gerbe, since BZ » KpZ, 1q » S1.
From this, we recover the usual classification of principal S1-bundles by the Euler class in H2pX,Zq.

To define a root stack of a line bundle (without section), consider L P PicX. Recall that such a

line bundle is equivalent to a map X
L
ÝÑ BC˚, and let BC˚ ^d

ÝÝÑ BC˚ be the dth power map. Then,
we have:

Definition 2 ([Cad07, Definition 2.2.6], [AGV08, Appendix B.1]). The stack XpL ,dq is defined to
be the fibre product

XpL ,dq BC˚

X BC˚

pr2

pr1 ^d

L

The stack XpL ,dq is a µd-gerbe over X, and, by construction, there is a line bundle N P PicXpL ,dq

such that

Nbd » pr˚1L .
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Of course, there is also a corresponding iterated statement (see, for example [FMN10, Proposition

6.9]), although we will not make use of it. We will mainly use the notation XpL ,dq “
d
a

L {X.

Perhaps a more geometric way to think of a root stack of a line bundle is given in [AGV08,
Appendix B.1]. Let L be a line bundle on a scheme X, and L ˚ be the total space minus the zero
section (i.e. the principal C˚-bundle associated to L ). Then,

d
a

L {X “ rL ˚{C˚s,

where C˚ acts fibrewise with weight d. In particular, the usual description of the weighted projective
stack Ppd, dq is recovered as d

a

Op´1q{P1, since Op´1q˚ “ A2ztp0, 0qu.

Remark A.3. It should be noted that XpL ,dq and XpL ,0,dq are not equivalent. Indeed, as is demon-
strated in [Cad07, Example 2.4.3], the latter category is an infinitesimal thickening of the former.

The Kummer sequence

1 Ñ µd
ι
ÝÑ Gm

^d

ÝÝÑ Gm Ñ 1 (A.1)

induces a long exact sequence on cohomology

¨ ¨ ¨ Ñ H1pX,Gmq
B
ÝÑ H2pX,µdq

ι˚
ÝÑ H2pX,Gmq Ñ . . . . (A.2)

For a root stack d
a

L {X, the corresponding class in H2pX,µdq is the image of L P H1pX,Gmq »

PicX under the connecting homomorphism. Conversely, a µd-gerbe is called essentially trivial if its
corresponding class in H2pX,µdq is in the image of the connecting homomorphism. In particular,
in the case where H2pX,Gmq “ 0, we make the identification

H2pX,µdq » PicX{dPicX,

and so the cohomology class classifying the dth root of L is given by the quotient of its corresponding
class in the Picard group, namely its first Chern class. Moreover, in this case [FMN10, Lemma 6.5]
identifies H2pX,µdq » Ext1

ZpZ{d,PicXq, where a class rL s P PicX{dPicX corresponds to the
short exact sequence

0 Ñ PicX Ñ PicXˆPicX{dPicXZ{dÑ Z{dÑ 0, (A.3)

where the map PicX Ñ PicX{dPicX is the projection, the map Z{dÑ PicX{dPicX is given by
1 ÞÑ rL s, and the first morphism of the extension is L Ñ pL bd, 0q.

For each µd-gerbe X , there is an underlying orbifold. This is the stack which results from the
stackification of the prestack whose objects are the same as the original stack, but whose isotropy
groups are quotiented by µd. This process is known as rigidification, although we refer to Appendix
C of [AGV08] for the precise details. It suffices for us to observe that, in the case where the gerbe

is the stack of roots of a line bundle on a scheme or orbifold, the map pr1 : d
a

L {X Ñ X is the

rigidification map. In particular, for X “ d
a

L {X and D a Cartier divisor on X, by OX pDq we
mean pr˚1OXpDq.

Example A.4. The most basic example of a gerbe is given by considering Bµd to be a µd-gerbe over
a point.

Example A.5. Consider an orbifold X and the trivial action of µd on X. Then the resulting quotient
stack is given by XˆBµd, and corresponds to the stack of dth roots of OX , or indeed any line bundle
on X whose dth root exists in PicX.

Example A.6. Consider the compactified moduli space of elliptic curves M1,1 » Pp4, 6q. This is
a Z{2-gerbe over Pp2, 3q, where the Z{2-torsor corresponds to the symmetry present in any lattice
defining an elliptic curve. It can be constructed as the stack of square roots of any line bundle
L P PicPp2, 3q » Z such that rL s P PicPp2, 3q{2 PicPp2, 3q » Z{2 is non-trivial. In this case,
Pp2, 3q is the rigidification of the moduli space of elliptic curves.
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Example A.7. Consider the short exact sequence

1 Ñ K Ñ H Ñ GÑ 1,

where K, H, and G are all finite abelian groups. Then BH Ñ BG is a K-gerbe, so is classified by
H2pBG,Kq » H2pG,Kq, which recovers the usual classification of short exact sequences in terms
of group cohomology. Moreover, this is the local structure at any geometric point of a K-gerbe.

Remark A.8. Note that above, and in what follows, we are implicitly taking K to have the structure
of a trivial G-module since we are only considering the case of trivially banded gerbes. For the
remainder of the paper, we will only consider the cases where G and K are cyclic groups, and so we
have H2pG,Kq » Ext1

ZpG,Kq by the universal coefficient theorem.

We will exclusively deal with root stacks, both with and without section, over P1. To this end,
consider D1 “ r0s “ q´ and D2 “ r8s “ q` and ~r “ pa, bq. Then we define

Pa,b :“ P1
D,~r

to be the weighted projective line with a stacky point of order a at q´ and of order b at q`. Unless
gcdpa, bq “ 1, then this is not a weighted projective space; however, if this is the case then we have

Pa,b » Ppa, bq :“
“

A2ztp0, 0qu{C˚
‰

,

where C˚ acts on A2ztp0, 0qu with weights a and b. Note that H2pPa,b,Gmq “ 0, and so all gerbes
whose underlying orbifold is Pa,b are essentially trivial.

Given a µd-gerbe over Pa,b, C, the structure of the gerbe at the points q˘ will be of central
importance to us. Observe that there is a natural (surjective) map

H2pPa,b, µdq Ñ H2prA1{µas, µdq ‘H
2prA1{µbs, µdq (A.4)

which comes from the Mayer–Vietoris sequence, and this determines the Ext-class at q˘ which
locally describes the gerbe. Explicitly, let U´ “ rA1{µas, suppose that C “ d

a

L{Pa,b, and that

L|U´ » OU´pnq´q has class β P PicU´ » Z{a. Observe that H2prA1{µas, µdq » Z{ gcdpa, dq, and
that the reduction β mod d yields an element rβs P Z{ gcdpa, dq determining a short exact sequence

1 Ñ µd Ñ H´ Ñ µa Ñ 1, (A.5)

classifying the gerbe on the patch U´, and corresponding to the dth root of OU´pnq´q. By con-
struction, there exists a (not unique!) character χd´ of H´ such that H´ acts via dχd´ on the fibre
of pr˚1OU´pnqq at the origin, and which pulls back via the inclusion of µd to H´ to a unit in Z{d.

Therefore, as N |U´ we take the equivariant sheaf on A1 where H´ acts via χd´ on the fibre at the

origin. By construction, for any χ P pH´, there is a unique k P t0, . . . , d´1u and j P tm, . . . ,m`a´1u
such that H´ acts on the fibre of the sheaf

pr˚1OU´pjqq bNbk (A.6)

at the origin with character χ. The local description of the gerbe on the patch U` “ rA1{µbs is
analogous, giving the local description of the gerbe on the two patches of Pa,b. Conversely, the
description of a gerbe on Pa,b is given by the local description on U˘, together with the information
of how the two local descriptions get identified on the overlapping C˚ “ U` X U´.

There is a strong link between the derived categories of root stacks and the representation theory
of finite dimensional algebras. If one takes a “ b “ 1, then this relationship is classical, and is
Bĕılinson’s result ([Bĕı78]) that

DbpP1q » DbpΛop ´modq,

where Λ is the path algebra of the Kronecker quiver. This was generalised by Geigle and Lenzing in
[GL87] to the situation P1

D,~r, where D is a finite collection of disjoint points with multiplicity one,
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and ~r is a tuple of positive integers. In particular, for D “ pq´, q`q and ~r “ pa, bq as above, it was
shown that

DbpPa,bq » DbpΛop
a,b ´modq,

where Λa,b is the path algebra of the quiver

Op´aq´q Op´pa´ 1qq´q . . . Op´q´q O

Op´bq`q Op´pb´ 1qq´q . . . Op´q`q O.

x x x x

y y y y

(A.7)

This can also be viewed as a simple example of a canonical algebra, as introduced by Ringel in
[Rin90].
As for sheaves on the gerbes constructed as the root stacks over orbifold curves, consider C “
d
a

L {Pa,b for some L P PicPa,b. There are natural full and faithful functors

Φi : CohP1
a,b Ñ Coh C
F ÞÑ pr˚1F bNbi,

where pr1 : C Ñ Pa,b is again the rigidification map. Taking the direct sum yields a special case of
[IU15, Theorem 1.5], giving an equivalence

Coh C »
`

CohPa,b
˘‘d

. (A.8)

Note that is not just semi-orthogonal, but also orthogonal, and that the equivalence is at the level of
abelian categories. Therefore, the derived category of coherent sheaves on a gerbe over a weighted
projective line only depends on the generic stabiliser group and the underlying weighted projective
line.

It is essentially because of (A.8) that our results are independent of the choice of gerbe structure
on irreducible components. To elaborate, consider C to be a chain of curves with two irreducible
components which has isotropy group H at their intersection; the general case proceeds inductively.
One can construct C as the pushout

C1

C2 BH,
φ

(A.9)

where φ : BH Ñ C2 is the composition of the autoequivalence of BH induced from the action of H
on the node, followed by its inclusion into C2. Since the abelian (and hence derived) categories of C1

and C2 are independent of gerbe structures by (A.8), the only information required to understand
the category of coherent sheaves of C is the autoequivalence of BH, and this is independent of the
gerbe structure chosen, as well as the characters χd1,` and χd2,´ .

A.1. Root stacks and stacky fans. A key step in our argument of Theorem 1 is the identification
of the B–model with a cycle of nodal stacky curves. To do this, we view the B–model as a hypersur-
face in a toric Deligne–Mumford stack, which we now briefly review the theory of. This theory was
initiated in [BCS03], and the relationship with gerbes and root stacks was explored in [FMN10]. As
with gerbes in general, this theory is developed well beyond the scope of what is required here, and
we aim only to briefly recount the required background; we refer to the original sources for more
detail.

Analogously to a toric variety, which contains an open dense torus T , a toric Deligne–Mumford
stack is defined to be a smooth, separated Deligne–Mumford stack with an open immersion of a
Deligne–Mumford torus, T ˆ BG for G a finite abelian group, such that the action of T ˆ BG on
itself extends to the whole stack ([FMN10, Section 3]). The data of a stacky fan is given by a triple
Σ “ pΣ, N, βq, where:
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‚ N is a finitely generated abelian group (not necessarily torsion-free),
‚ Σ is a fan in NQ “ N bZ Q with n rays such that the rays span NQ, and
‚ β : Zn Ñ N is a morphism of groups such that the image of the ith basis vector of Zn in NQ

is on the ith ray.

For simplicity, we will always assume that Σ is complete. From this data, one can construct a toric
DM stack in analogy with the Cox construction for toric varieties ([Cox95]) as follows. Let d be the
rank of N , and choose a projective resolution

0 Ñ Z` Q
ÝÑ Zd`` Ñ N Ñ 0.

Then, choose a map B : Zn Ñ Zd`` which lifts β. The cone of β, considered as a morphism of

complexes r0 Ñ Zns Ñ r0 Ñ Z` Q
ÝÑ Zd`` Ñ 0s, is given by the complex

0 Ñ Zn`` rBQsÝÝÝÑ Zd`` Ñ 0.

We define DGpβq :“ cokerprBQs_q, and define the map

β_ : pZnq_ Ñ DGpβq

by the composition pZnq_ ãÑ pZn``q_ Ñ DGpβq. We then have ZΣ “ Anzt0u (since Σ is complete)
is the quasi-affine variety associated to the fan. By defining GΣ “ HomZpDGpβq,C˚q, we get a
morphism GΣ Ñ pC˚qn, and this induces an action of GΣ on ZΣ via the natural action of pC˚qn on
Cn. The resulting stack X pΣq :“ rZΣ{GΣs is called the toric Deligne–Mumford stack associated to
Σ.

Example A.9 ([BCS03, Example 3.5]). Let Σ be the complete fan in Q, and

β : Z2

˜

2 ´3
1 0

¸

ÝÝÝÝÝÝÝÑ Z‘ Z{2 “: N.

Then one can check that

β_ : pZ2q_

´

4 6
¯

ÝÝÝÝÝÑ DGpβq » Z,

and so the C˚ action on ZΣ “ A2ztp0, 0qu is t ¨ px, yq “ pt4x, t6yq, yielding X pΣq » Pp4, 6q.

Given a stacky fan Σ “ pΣ, β,Nq, one can associate its rigidification Σrig “ pΣ, βrig, N{Ntorq by
defining βrig : Zn Ñ N{Ntor to be the composition of β and the quotient morphism N Ñ N{Ntor.
The stack X pΣrigq is the DM stack associated to this stacky fan, and, by construction, comes with
the rigidification map X pΣq Ñ X pΣrigq induced from the injective morphism DGpβrigq Ñ DGpβq.

Closed substacks corresponding to cones of the fan are defined in [BCS03, Section 4]. We will
restrict ourselves to the case of rays (one-dimensional cones), and recall the basic construction here.
Let ρi be a ray of Σ, ei the positive generator of the ith summand of Zn, Nρi the subgroup of N
generated by βpeiq, and Npρiq “ N{Nρi the quotient. This defines a surjection NQ Ñ NpρiqQ,
and the quotient fan Σ{ρi in NpρiqQ is defined as the image of the cones in Σ containing ρi under
this surjection. The link of ρi is defined as linkpρiq “ tτ | τ ` ρi P Σ, and ρi X τ “ 0u. Let `
be the number of rays in linkpρiq. We define the closed substack associated to ρi as the triple
Σ{ρi “ pΣ{ρi, Npρiq, βpρiqq, where

βpρiq : Z` Ñ Npρiq

is defined as the composition Z` ãÑ Zn β
ÝÑ N Ñ N{Nρi “ Npρiq. In particular, the divisor Dρi

corresponding to the ray ρi is X pΣ{ρiq.

Of most importance to us is the fact that if X is a toric DM stack whose coarse moduli space is P1

or P2, then (amongst other things) [FMN10, Theorem II] shows that there exists a stacky fan whose
corresponding quotient stack is X . Moreover, in the case that X is an orbifold, this fan is unique.
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This is far from true in the case where N has torsion, as is demonstrated in [FMN10, Example 7.29].
There are several sources of non-uniqueness, although in our situation it is essentially equivalent to
the fact that it is possible to choose multiple lifts of an element in Z{n to Z.

From now on, we will restrict ourselves the the case of toric Deligne–Mumford stacks whose
coarse moduli space is given by P1 or P2. Let C “ X pΣq be a toric Deligne–Mumford stack
whose rigidification is Pa,b. Then, [FMN10, Proposition 7.20] shows that there is a unique class

in Ext1
ZpNtor,PicPa,bq such that the HompNtor,C˚q´banded3 gerbe over Pa,b associated to this class

is equivalent to C. The proof of this proposition is constructive, and it is straightforward to deter-
mine the short exact sequence (A.3) from the data of a stacky fan. The main ingredient, however,
which we will use in our application to invertible polynomials is [FMN10, Theorem 7.24], which
shows (as a special case) that if Σ is the complete fan in Q and

β : Z2

˜

a ´b
n´ n`

¸

ÝÝÝÝÝÝÝÝÑ Z‘ Z{d “: N,

then

XpΣq » d

b

L {Pa,b

as toric DM stacks, where L “ Opq´qn´ bOpq`qn` .

Remark A.10. It is important to emphasise that two inequivalent gerbes can be equivalent as toric
DM stacks. This happens when the corresponding Ext-classes are isomorphic as sequences, but
inequivalent as extensions – see [FMN10, Remark 7.23] and [BN06, Proposition 6.2]. In particular,
the above application of [FMN10, Theorem 7.24] only makes a claim about toric DM stacks. By
[FMN10, Proposition 7.20], one can check when this equivalence is also an equivalence of gerbes,
although this will not be necessary for our purposes.

Example A.11. (cf. [BCS03, Example 3.6]) Let Σ be the complete fan in Q, N “ Z‘ Z{3, and

βn : Z2

˜

1 ´1
n 0

¸

ÝÝÝÝÝÝÝÑ Z‘ Z{3.

Since Σ is complete, we have ZΣn “ A2ztp0, 0qu for any n. In the case of n mod 3 “ 0, we have

β_0 : pZ2q_

˜

1 1
0 0

¸

ÝÝÝÝÝÑ DGpβq » Z‘ Z{3,

and so GΣ0 » C˚ ˆ µ3, and X pΣ0q » P1 ˆBµ3. In the case where n mod 3 ‰ 0, we have

β_n : pZ2q_

´

3 3
¯

ÝÝÝÝÝÑ DGpβq » Z,

and so GΣn » C˚, and X pΣnq » Pp3, 3q as toric DM stacks for any such n. However, the class in
Ext1

ZpZ{3,Zq corresponding to n is given by the sequence

0 Ñ Z ˆ3
ÝÝÑ Z ˆn

ÝÝÑ Z{3 Ñ 0,

and so n1 and n2 do not define equivalent gerbes unless n1 ” n2 mod 3. Moreover, this shows

X pΣnq »
3
a

Op1q{P1 for n mod 3 “ 1, and

X pΣnq »
3
a

Op2q{P1 for n mod 3 “ 2.

This also demonstrates the non-uniqueness of the fan in the case where the DM stack is not an
orbifold – taking βn for any n P Z yields a gerbe which is equivalent to the 3rd root of Opn mod 3q.

3We mention banding only for completeness; we continue to only consider trivially banded gerbes.
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